5次方程式 - 質問解決D.B.(データベース)

5次方程式

問題文全文(内容文):
$ x^4=\dfrac{11x^6}{6x-11},これを解け.$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4=\dfrac{11x^6}{6x-11},これを解け.$
投稿日:2022.07.15

<関連動画>

福田の数学〜慶應義塾大学2021年看護医療学部第3問〜散布図と箱ひげ図

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} ある高校の生徒30人に対し、50m走のタイムを2回計測した。\\
左図(※動画参照)は1回目の計測結果を横軸に2回目の計測結果\\
を縦軸に取った散布図である。\\
(1)次の(\textrm{A})から(\textrm{F})のうち、1回目の計測結果の箱ひげ図\\
として適当なものは\boxed{\ \ ネ\ \ }であり、2回目の計測結果の箱ひげ図として\\
適当なものは\boxed{\ \ ノ\ \ }である。\\
(2)次の(\textrm{G})から(\textrm{L})のうち、1回目と2回目の計測結果の合計の\\
箱ひげ図として適切なものは\boxed{\ \ ハ\ \ }である。\\
(3)遅れてやってきた31人目の生徒の50m走のタイムを2回計測した\\
結果、1回目は20.0(秒)、2回目は10.0(秒)であった。各生徒の2回の\\
計測結果の合計を考え、最初の30人の生徒の平均値を\bar{ x_{31} },中央値を\\
m_{31}とする。\bar{ x_{30} }=17.0であることに注意すると、\\
\bar{ x_{31} }-\bar{ x_{30} }=\boxed{\ \ ヒ\ \ }である。一方、\\
m_{31}-m_{30}=\boxed{\ \ フ\ \ }である。\\
\end{eqnarray}
この動画を見る 

【数Ⅰ】体系問題集3(論理・確率編)19:集合と命題:命題と条件:必要条件、十分条件の見分け方

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #体系数学#体系数学問題集3(論理・確率編)
指導講師: 理数個別チャンネル
問題文全文(内容文):
「x=2」ならば「x²=2x」であるための○○条件である 【集合と命題】【必要十分条件】
この動画を見る 

【数Ⅰ】絶対値が2つある方程式【見た目より難しい!?丁寧に場合分けをしよう】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ \vert x+2 \vert + \vert 2x-3 \vert =6を解け.$
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[2]。三角比を用いた測量の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、\\
後のように話している。\\
\\
太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。\\
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、\\
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした\\
垂線とその水平面との交点のことだよ。\\
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、\\
三角比の表を用いて調べたら16°だったよ。\\
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい\\
のかな?\\
\\
図1の\thetaはちょうど16°であったとする。しかし、図1の縮尺は、水平方向が\frac{1}{100000}\\
であるのに対して鉛直方向は\frac{1}{25000}であった。\\
実際にキャンプ場の地点Aから山頂Bを見上げる角である\angle BACを考えると、\\
\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }である。\\
\\
したがって、\angle BACの大きさは\boxed{\ \ セ\ \ }、ただし、目の高さは無視して考えるものとする。\\
\\
\boxed{\ \ セ\ \ }の解答群\\
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい\\
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である\\
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である\\
⑨64°より大きく65°より小さい
\end{eqnarray}
この動画を見る 

【高校数学あるある】気持ちいい問題!整数部分と小数部分の式の値 #Shorts

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\dfrac{2}{\sqrt6-2}$の整数部分を$a$,小数部分を$b$とするとき,$a^2+4ab+4b^2$の値を求めよ。
この動画を見る 
PAGE TOP