大学入試問題#139 佐賀大学(2014) 定積分 - 質問解決D.B.(データベース)

大学入試問題#139 佐賀大学(2014) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}x\ \tan^2x\ dx$を計算せよ。

出典:2014年佐賀大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}x\ \tan^2x\ dx$を計算せよ。

出典:2014年佐賀大学 入試問題
投稿日:2022.03.13

<関連動画>

数学「大学入試良問集」【19−5定積分で表された関数】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#神戸商船大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
次の定積分の値を求めよ。
 (ⅰ)$\displaystyle \int_{0}^{\pi}\sin\ x\ dx$
 (ⅱ)$\displaystyle \int_{0}^{\pi}e^{2x}\sin\ x\ dx$

(2)
次の等式をみたす$f(x)$を求めよ。
$f(x)=e^{2x}+\displaystyle \int_{0}^{\pi}f(t)\sin\ t\ dt$
この動画を見る 

福田の数学〜上智大学2023年理工学部第3問〜対数関数の積分と数学的帰納法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $e$を自然定数の底とする。自然数$n$に対して、
$S_n$=$\displaystyle\int_1^e(\log x)^n dx$
とする。
(1)$S_1$の値を求めよ。
(2)すべての自然数$n$に対して、
$S_n$=$a_n e$+$b_n$, ただし$a_n$, $b_n$はいずれも整数
と表されることを証明せよ。
この動画を見る 

11大阪府教員採用試験(数学:2番 微積)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
2⃣
(1)$y=x^x(x>0)$
$\frac{dy}{dx}$を求めよ。
(2)$\displaystyle \lim_{ n \to \infty } \frac{1}{\sqrt n}( \frac{1}{\sqrt (n+1)} +\frac{1}{\sqrt (n+2)} + \cdots + \frac{1}{\sqrt (2n)} )$
この動画を見る 

大学入試問題#140 横浜市立大学医学部(2008) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{2}x^4\sqrt{ 4-x^2 }\ dx$を計算せよ。

出典:2008年横浜市立大学医学部 入試問題
この動画を見る 

大学入試問題#101 東海大学医学部(2017) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}x^3(1-x^2)^8dx$を計算せよ。

出典:2017年東海大学医学部 入試問題
この動画を見る 
PAGE TOP