福田のおもしろ数学489〜3本の光線のなす角と三角関数 - 質問解決D.B.(データベース)

福田のおもしろ数学489〜3本の光線のなす角と三角関数

問題文全文(内容文):

$3$本の光線が原点$O$から空間へ発射された。

$2$本ずつのなす角が

$\alpha,\beta,\gamma(0° \lt \alpha \leqq \beta \leqq \gamma \leqq 180°)$

であり、この$3$本の光線は同一平面上にない。

$\sin\dfrac{\alpha}{2}+\sin\dfrac{\beta}{2} \gt \sin\dfrac{\gamma}{2}$

を証明せよ。
    
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$3$本の光線が原点$O$から空間へ発射された。

$2$本ずつのなす角が

$\alpha,\beta,\gamma(0° \lt \alpha \leqq \beta \leqq \gamma \leqq 180°)$

であり、この$3$本の光線は同一平面上にない。

$\sin\dfrac{\alpha}{2}+\sin\dfrac{\beta}{2} \gt \sin\dfrac{\gamma}{2}$

を証明せよ。
    
投稿日:2025.05.05

<関連動画>

動体視力と数学を鍛えるダルマさん~全国入試問題解法 #Shorts

アイキャッチ画像
単元: #数学(中学生)#三角関数#三角関数とグラフ#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
三角関数の証明に関して解説していきます.
この動画を見る 

福田のわかった数学〜高校2年生046〜領域(1)連立不等式の表す領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
xy\lt 1 \\
xy(x^2-y^2)(x^2+y^2-2)\gt 0
\end{array}
\right.
\end{eqnarray}$
の表す領域を図示せよ.
この動画を見る 

#宮崎大学2024#不定積分_20#元高校教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int x^2log$ $x$ $dx$

出典:2024年 宮崎大学
この動画を見る 

山梨大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^{n+2}+4^{2n+1}$が13の倍数であることを証明
数学的帰納法以外も考えてください

出典:2008年山梨大学 過去問
この動画を見る 

分数式の計算

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\dfrac{1}{x}+\dfrac{1}{x^2-x}=$?
この動画を見る 
PAGE TOP