大学入試問題#285 早稲田大学(2013) #解と係数の関係 - 質問解決D.B.(データベース)

大学入試問題#285 早稲田大学(2013) #解と係数の関係

問題文全文(内容文):
$k$:実数
直線$l:y-2=k(x-1)$
放物線$C:y=x^2$
で囲まれる図形の面積の最小値とそのときの$k$の値を求めよ。

出典:2013年早稲田大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$k$:実数
直線$l:y-2=k(x-1)$
放物線$C:y=x^2$
で囲まれる図形の面積の最小値とそのときの$k$の値を求めよ。

出典:2013年早稲田大学 入試問題
投稿日:2022.08.19

<関連動画>

数学「大学入試良問集」【13−1 Snとanの取り扱い】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#明星大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とする。
$S_n=-2a_n+3n$が成り立つとき、次の問いに答えよ。
(1)$a_1$と$a_2$を求めよ。
(2)$a_{n+1}$を$a_n$を用いて表せ。
(3)$a_n$を$n$を用いて表せ。
この動画を見る 

数学「大学入試良問集」【14−7ベクトルの等式と円】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$の外接円の中心を$O$とし、半径を1とする。
$13\overrightarrow{ OA }+12\overrightarrow{ OB }+5\overrightarrow{ OC }=\vec{ 0 }$であるとき、次の問いに答えよ。
(1)内積$\overrightarrow{ OA }・\overrightarrow{ OB }$を求めよ。
(2)$\triangle OAB,\triangle OBC,\triangle OCA$の面積を求めよ。
この動画を見る 

愛媛大・三次関数 東海大 4次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$f(x)=ax^3+3a^2x^2+1(a \neq 0)$
$2 \leqq x \leqq 4$における最小値がf(2)になるようなaの範囲

東海大学過去問題
次の4次方程式を解け
$x^4-2x^3-13x-2x+1=0$
この動画を見る 

京大卒しか入手できないゴリゴリの内部資料を公開【篠原好】

アイキャッチ画像
単元: #京都大学#京都大学
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
「京大卒しか入手できないゴリゴリの内部資料」を公開しています。
この動画を見る 

大学入試問題#849「これ得意かも」 #和歌山大学(2017) #式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学
指導講師: ますただ
問題文全文(内容文):
$\sqrt[ 3 ]{ \sqrt{ 5 }+2 }-\sqrt[ 3 ]{ \sqrt{ 5 }-2 }$が整数であることを示せ

出典:2017年和歌山大学 入試問題
この動画を見る 
PAGE TOP