問題文全文(内容文):
$k$:実数
直線$l:y-2=k(x-1)$
放物線$C:y=x^2$
で囲まれる図形の面積の最小値とそのときの$k$の値を求めよ。
出典:2013年早稲田大学 入試問題
$k$:実数
直線$l:y-2=k(x-1)$
放物線$C:y=x^2$
で囲まれる図形の面積の最小値とそのときの$k$の値を求めよ。
出典:2013年早稲田大学 入試問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$k$:実数
直線$l:y-2=k(x-1)$
放物線$C:y=x^2$
で囲まれる図形の面積の最小値とそのときの$k$の値を求めよ。
出典:2013年早稲田大学 入試問題
$k$:実数
直線$l:y-2=k(x-1)$
放物線$C:y=x^2$
で囲まれる図形の面積の最小値とそのときの$k$の値を求めよ。
出典:2013年早稲田大学 入試問題
投稿日:2022.08.19