福田の数学〜ChatGPTに東工大第1問を解かせてみたら大変なことに〜 - 質問解決D.B.(データベース)

福田の数学〜ChatGPTに東工大第1問を解かせてみたら大変なことに〜

問題文全文(内容文):
$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$ の整数部分を求めよ。

東工大過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#その他#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\int_0^{2023}\frac{2}{x+e^x}dx$ の整数部分を求めよ。

東工大過去問
投稿日:2023.03.23

<関連動画>

#自治医科大(2015)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{1}{1+\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }+\sqrt{ 5 }}+\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 7 }}+\displaystyle \frac{1}{\sqrt{ 7 }+\sqrt{ 9 }}$

出典:2015年自治医科大学
この動画を見る 

絶対に取りたい整数問題!分からない時はとにかく実験あるのみ【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n^2+1,2n^2+3,6n^2+5$がすべて素数となる自然数$n$は$n=1,2$のみであることを示せ。

早稲田大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題005〜一橋大学2015年文系数学第1問〜互いに素な自然数の個数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の整数とする。n以下の正の整数のうち、nとの最大公約数が1と
なるものの個数をE(n)で表す。たとえば
$E(2)=1,E(3)=2,E(4)=2,...,E(10)=4, ...$
である。
(1)E(1024)を求めよ。
(2)E(2015)を求めよ。
(3)mを正の整数とし、pとqを異なる素数とする。$n=p^mq^mのとき\frac{E(n)}{n}\geqq\frac{1}{3}$
が成り立つことを示せ。

2015一橋大学文系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題086〜慶應義塾大学2020年度医学部第1問(1)〜平面と平面のなす角

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)座標空間に3点O(0,0,0), A(1,0,a), B(0,1,b)をとり、O,A,Bによって定められる平面をαとする。ただし、a>0, b>0とする。平面αとxy平面との交線をlとすると、lはOを通り、ベクトル$\overrightarrow{u}$=(1, $\boxed{あ}$,0)に平行な直線である。また平面αとxy平面のなす角をθ(ただし0≦θ≦$\frac{\pi}{2}$)とすると、$\cos\theta$=$\boxed{\ \ い\ \ }$である。

2020慶應義塾大学医学部過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(2)〜多項定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)$(1+x+x^2)^{10}\ のx^{16}$の係数は$\boxed{ア}$である。

2022上智大学理工部過去問
この動画を見る 
PAGE TOP