大学入試問題#11 北里大学(医) 2021 整数問題 - 質問解決D.B.(データベース)

大学入試問題#11 北里大学(医) 2021 整数問題

問題文全文(内容文):
$x,y,z,w:$自然数
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{2z}+\displaystyle \frac{1}{3w}=\displaystyle \frac{7}{3}$
・・・*
(1)
$x$のとり得る値を求めよ。

(2)
$x=y=1$のとき$$

(3)
$xyzw$の値を最大にする組$(x,y,z,w)$を求めよ。

出典:2021年北里大学医学部 入試問題
単元: #数A#整数の性質#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y,z,w:$自然数
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{2z}+\displaystyle \frac{1}{3w}=\displaystyle \frac{7}{3}$
・・・*
(1)
$x$のとり得る値を求めよ。

(2)
$x=y=1$のとき$$

(3)
$xyzw$の値を最大にする組$(x,y,z,w)$を求めよ。

出典:2021年北里大学医学部 入試問題
投稿日:2021.09.18

<関連動画>

333‥‥33が2021の倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$333・・・・・・33$のように,すべての位の数が3である数の中には必ず$2021$の倍数があることを示せ.
この動画を見る 

福田の数学〜北海道大学2023年理系第4問〜絶対値の和の最小となる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ nを2以上の自然数とする。1個のさいころをn回投げて出た目の数を順に$a_1$, $a_2$, ... ,$a_n$とし、
$K_n$=|1-$a_1$|+|$a_1$-$a_2$|+...+|$a_{n-1}$-$a_n$|+|$a_n$-6|
とおく。また$K_n$のとりうる値の最小値を$q_n$とする。
(1)$K_3$=5となる確率を求めよ。
(2)$q_n$を求めよ。また、$K_n$=$q_n$となるための$a_1$, $a_2$,...,$a_n$に関する必要十分条件を求めよ。
(3)nを4以上の自然数とする。$L_n$=$K_n$+|$a_4$-4|とおき、$L_n$のとりうる値の最小値を$r_n$とする。$L_n$=$r_n$となる確率$p_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 

福田のおもしろ数学336〜連続する奇数の素数の和は3つ以上の因数をもつ証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
連続する奇数の素数$p,q$に対し$p+q$は$1$より大きい3個以上の整数の積で表される。これを証明してください。
この動画を見る 

福田のおもしろ数学371〜初項が素数で漸化式で定義された数列が素数でない項をもつ証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_1=p$(素数), $a_{n+1}=2a_n-1$で定まる数列には素数でない項が存在する。証明せよ。
この動画を見る 

#39 数検1級1次 過去問 解と係数の関係 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$m,n:$正の整数
$x^3-mx^2+nx-n=0$のすべての解が正の整数であるような組$(m,n)$を求めよ。
この動画を見る 
PAGE TOP