これ分かる? - 質問解決D.B.(データベース)

これ分かる?

問題文全文(内容文):
計算せよ
$\sqrt{ (1-\sqrt{ 2 })^2 }$
チャプター:

00:00 はじまり

単元: #数学(中学生)#中3数学#平方根
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
計算せよ
$\sqrt{ (1-\sqrt{ 2 })^2 }$
投稿日:2022.09.18

<関連動画>

【高校受験対策】数学-死守34

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守34

①$(-8)+(-4)$

②$-\frac{5}{7}+\frac{2}{3}$

③$65a^2b \div5a$

④$\frac{18}{\sqrt{2}}-\sqrt{98}$

⑤$(x+9)^2-(x-3)(x-7)$

⑥$(x+4)^2-2(x+4)-24$を因数分解しなさい。

⑦2次方程式$6x^2-2x-1=0$を解きなさい。

⑧関数$y=ax^2$について、$x$の値が$2$から$5$まで増加するときの変化の割合が$ー4$であった。このときの$a$の値を求めなさい。

④1本$a$円のえんぴつを9本と1個100円の消しゴムを1個買って1000円を支払い、おつりを受け取った。
このときの数量の関係を不等式で表しなさい。ただし、右辺は1000だけとする。

⑩$\sqrt{53-2n}$が整数となるような正の整数$n$をすべて書きなさい。


Aさんの家からバス停までの道のりは$a$km、バス停から駅までの道のりは$b$kmである。Aさんが、Aさんの家からバス停までは時速4kmで歩き、バス停から駅までは時速30kmで走るバスに乗ったところ、 Aさんの家から駅まで$t$時間かかった。
このとき、$t$を$a$と$b$を使った式で表しなさい。 ただし、バス停でバスを待つ時間は考えないものとする。



右の度数分布表は、あるクラスの生徒20人のハンドボール投げの記録をまとめたものである。この度数分布表から求められる記録の平均値を求めなさい。
この動画を見る 

高等学校入学試験予想問題:洛南高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る 

【数学】中3-17 ルートの変形

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\sqrt{ }$の中で①になったやつは、$\sqrt{ }$の
外に出てこれる。
逆に、$\sqrt{ }$の外から中に入れるときにも②しよう!!

◎次の数を$\sqrt{ a }$の形にしよう!
③$2\sqrt{ 3 }$
④$6\sqrt{ 2 }$
⑤$\displaystyle \frac{\sqrt{ 18 }}{3}$
⑥$\displaystyle \frac{\sqrt{ 24 }}{2}$

$\sqrt{ }$の中を簡単にするときのポイントは、
4、⑦,⑧,⑨,⑩,・・・・
を使ったかけ算に分解するんだ!!
それで出来ないときは、⑪しよう!!

◎変形して、$\sqrt{ }$の中にできるだけ簡単にしよう!!
⑫$\sqrt{ 8 }$
⑬$\sqrt{ 27 }$
⑭$\sqrt{ 75 }$
⑮$\sqrt{ 360 }$
⑯$\sqrt{ 300 }$
⑰$\sqrt{ 1008 }$
この動画を見る 

【この動画で数学が好きになる!?】平方根:渋谷教育学園幕張高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#渋谷教育学園幕張高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 渋谷教育学園幕張高等学校

$x+\displaystyle \frac{1}{x}=5-\sqrt{ 5 }$のとき
$\displaystyle \frac{\sqrt{ x^4-10x^3+25x^2-10x+1 }}{x}$
の値を求めなさい。
この動画を見る 

ルートの大小関係

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt 2 + \sqrt 3$ , $1 + \sqrt 6$ , $\sqrt {10}$
どれが一番大きい?

札幌光星高等学校
この動画を見る 
PAGE TOP