福田の数学〜旧・東京工業大学、東京科学大学2025理系第1問〜逆関数の定積分 - 質問解決D.B.(データベース)

福田の数学〜旧・東京工業大学、東京科学大学2025理系第1問〜逆関数の定積分

問題文全文(内容文):
$\boxed{1}$$\quad$関数$f(x)$を$x\geqq 0$に対して

$f(x)=x\log(1+x)$と定める。

(1)不定積分$\displaystyle \int x\log(1+x)dx$を求めよ。

(2)$y=f(x) \quad (x\geqq 0)$の逆関数を

$y=g(x) \quad (x\geqq 0)$とする。

また、$a,b$を$g(a)=1,g(b)=2$となる

実数となる。

このとき定積分$I=\displaystyle \int_{a}{b} g(x)dx$の値を求めよ。

(3)関数$P(x)$を$x\geqq 0$に対して

$P(x)=\displaystyle \int_{0}^{x}\sqrt{1+f(t)dt}$と定める。

このとき、$y=P(x)$について、

定義域を$x\geqq 0$とする逆関数

$y=Q(x)$が微分可能であることは

説明なしに認めてよい。

関数$R(x)$を$x\geqq 0$に対して

$R(x)=\displaystyle int_{0}^{P(x)}\dfrac{1}{Q'(\upsilon)}$と定めるとき、

$R(x)$を求めよ。

図は動画内参照

$2025$年東京科学大学(旧・東京工業大学)理系過去問題
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$$\quad$関数$f(x)$を$x\geqq 0$に対して

$f(x)=x\log(1+x)$と定める。

(1)不定積分$\displaystyle \int x\log(1+x)dx$を求めよ。

(2)$y=f(x) \quad (x\geqq 0)$の逆関数を

$y=g(x) \quad (x\geqq 0)$とする。

また、$a,b$を$g(a)=1,g(b)=2$となる

実数となる。

このとき定積分$I=\displaystyle \int_{a}{b} g(x)dx$の値を求めよ。

(3)関数$P(x)$を$x\geqq 0$に対して

$P(x)=\displaystyle \int_{0}^{x}\sqrt{1+f(t)dt}$と定める。

このとき、$y=P(x)$について、

定義域を$x\geqq 0$とする逆関数

$y=Q(x)$が微分可能であることは

説明なしに認めてよい。

関数$R(x)$を$x\geqq 0$に対して

$R(x)=\displaystyle int_{0}^{P(x)}\dfrac{1}{Q'(\upsilon)}$と定めるとき、

$R(x)$を求めよ。

図は動画内参照

$2025$年東京科学大学(旧・東京工業大学)理系過去問題
投稿日:2025.02.25

<関連動画>

【高校数学】数Ⅲ-77 関数の極限②

アイキャッチ画像
単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の等式が成り立つように、定数$a,b$の値を定めよ。

①$\displaystyle \lim_{n\to 2}\dfrac{x^2+ax+b}{x+2}=3$

②$\displaystyle \lim_{x\to 3}\dfrac{\sqrt{3x+a}-b}{x-3}=\dfrac{3}{8}$
この動画を見る 

17東京都教員採用試験(数学:1-7番 シグマと極限値)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#その他#数学(高校生)#数B#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(7)
$\displaystyle \lim_{ n \to \infty } \frac{2(1+2^2+3^2+\cdots+n^2)^4}{(1+2^5+3^5+\cdots+n^5)^2}$
この動画を見る 

名古屋市立(医)積分 初のVチューバー解説 アイシアちゃん/仮の姿は東大数学科院卒杉山聡

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n:$自然数
$S_{n}:y=e^{-x}\sin x$と$y$軸の囲む面積$((n-1)\pi \leqq x \leqq n\pi)$

(1)
$S_{n}$は?

(2)
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n S_{k}$は?
この動画を見る 

06神奈川県教員採用試験(数学:1番 数列の極限)

アイキャッチ画像
単元: #関数と極限#数列の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣$a_1=1,\frac{(a_{n+1})^2}{a_n} = \frac{1}{e}$
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
この動画を見る 

大学入試問題#505「綺麗な数列の問題」 #神戸大学 (2022) #数列 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\ a_2=2$
$a_{n+2}=\sqrt{ a_{n+1}・a_n }$のとき
$\displaystyle \lim_{ n \to \infty } a_n$を求めよ

出典:2022年神戸大学 入試問題
この動画を見る 
PAGE TOP