福田の数学〜慶應義塾大学2025経済学部第2問〜数列の和から一般項を求める - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2025経済学部第2問〜数列の和から一般項を求める

問題文全文(内容文):

$\boxed{2}$

数列$\{a_n\}$に対して

$T_n=\displaystyle \sum_{k=1}^n \dfrac{(k+2)!}{(k-1)!}a_k (n=1,2,3,\cdots)$

とおくとき、

$T_n=\left(n-\dfrac{1}{2}\right)^2 (n=1,2,3,\cdots)$

が成り立つとする。ただし、$0!=1$である。

(1)$a_1=\dfrac{\boxed{ア}}{\boxed{イウ}},a_2=\dfrac{\boxed{エ}}{\boxed{オ}}$である。

(2)$n\geqq 2$に対して$T_n-T_{n-1}=\boxed{カ}n-\boxed{キ}$が

成り立つから、

$a_n=r^n\dfrac{n-\boxed{ク}}{(n+s)(n+t)(n+u)} (n=2,3,4,\cdots)$

である。ただし、ここに$r=\boxed{ケ}$であり、

$s\lt t \lt u$として$s=\boxed{コ},t=\boxed{サ},u=\boxed{シ}$である。

$2025$年慶應義塾大学経済学部過去問題
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

数列$\{a_n\}$に対して

$T_n=\displaystyle \sum_{k=1}^n \dfrac{(k+2)!}{(k-1)!}a_k (n=1,2,3,\cdots)$

とおくとき、

$T_n=\left(n-\dfrac{1}{2}\right)^2 (n=1,2,3,\cdots)$

が成り立つとする。ただし、$0!=1$である。

(1)$a_1=\dfrac{\boxed{ア}}{\boxed{イウ}},a_2=\dfrac{\boxed{エ}}{\boxed{オ}}$である。

(2)$n\geqq 2$に対して$T_n-T_{n-1}=\boxed{カ}n-\boxed{キ}$が

成り立つから、

$a_n=r^n\dfrac{n-\boxed{ク}}{(n+s)(n+t)(n+u)} (n=2,3,4,\cdots)$

である。ただし、ここに$r=\boxed{ケ}$であり、

$s\lt t \lt u$として$s=\boxed{コ},t=\boxed{サ},u=\boxed{シ}$である。

$2025$年慶應義塾大学経済学部過去問題
投稿日:2025.05.21

<関連動画>

記号は数II,中身は難関中学入試

アイキャッチ画像
単元: #数Ⅱ#数列#過去問解説(学校別)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_n=[\log_4 n],\displaystyle \sum_{k=1}^n a_k=1104$
nの値を求めよ.
この動画を見る 

福田の数学〜中央大学2021年理工学部第2問〜3項間の漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$コインを繰り返し,連続した3回が順に,表→裏→表,あるいは,裏→表→裏,というパターンが出たときにコイン投げを終了する.$n\geqq 3$に対し,コインをちょうど$n$回投げて終了する確率を$p_n$とする.
以下の手順により$p_n$を求める.コインを$n$回投げて,「まだ終了していないが$n+1$回目に表が出たら終了する」または「まだ終了してないが$n+1$回目に裏が出たら終了する.」という状態にある確率を$r_n$とする.またコインを$n$回投げて「まだ終了しておらず,$n+1$回目に表が出ても裏が出ても終了しない」という状態にある確率を$s_n$とする.
このとき,$r_3=\dfrac{1}{4},s_3=\boxed{ク},r_4=\dfrac{1}{4},s_4=\boxed{ケ}$である.
ここで,$r_{n+4}$と$r_{n},s_n$を用いて表すと,それぞれ$r_{n+1}=\boxed{コ}$,$s_{n+1}=\boxed{サ}$となる.
この動画を見る 

福田のおもしろ数学323〜小数部分の和を不等式で評価する

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$x$の小数部分を$\{x\}$で表すことにする。
$\displaystyle\{\sqrt{1}\}+\{\sqrt{2}\}+\{\sqrt{3}\}+・・・+\{\sqrt{n^2}\}\leqq \frac{n^2-1}{2}$
を証明せよ。
この動画を見る 

福田の数学〜神戸大学2024年理系第1問〜無理関数を利用して定義された数列の一般項

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $c$を正の実数とする。各項が正である数列$\left\{a_n\right\}$を次のように定める。$a_1$は関数
$y$=$x$+$\sqrt{c-x^2}$ (0≦$x$≦$\sqrt c$)
が最大値をとるときの$x$の値とする。$a_{n+1}$は関数
$y$=$x$+$\sqrt{a_n-x^2}$ (0≦$x$≦$\sqrt{a_n}$)
が最大値をとるときの$x$の値とする。数列$\left\{b_n\right\}$を$b_n$=$\log_2a_n$ で定める。以下の問いに答えよ。
(1)$a_1$を$c$を用いて表せ。
(2)$b_{n+1}$を$b_n$を用いて表せ。
(3)数列$\left\{b_n\right\}$の一般項を$n$と$c$を用いて表せ。
この動画を見る 

一橋大 確率漸化式

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
動画内の図のように同時に玉を1個入れ替える
$n$回目に$A$に赤1個、白3個となっている確率$P_n$を求めよ

出典:一橋大学 過去問
この動画を見る 
PAGE TOP