問題文全文(内容文):
${\Large\boxed{1}}$(1)ある病原菌の検査薬は、病原菌に感染しているのに誤って陰性と判断する
確率が20%、感染していないのに、誤って陽性と判断する確率が10%である。
全体の20%がこの病原菌に感染している集団から1つの検体を取り出して、
独立に2回、検査薬で検査する。こんとき、2回とも陰性であったが、実際には
感染している確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$であり、少なくとも1回は陽性であったが、
実際には病原菌には感染していない確率は$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
2021上智大学理系過去問
${\Large\boxed{1}}$(1)ある病原菌の検査薬は、病原菌に感染しているのに誤って陰性と判断する
確率が20%、感染していないのに、誤って陽性と判断する確率が10%である。
全体の20%がこの病原菌に感染している集団から1つの検体を取り出して、
独立に2回、検査薬で検査する。こんとき、2回とも陰性であったが、実際には
感染している確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$であり、少なくとも1回は陽性であったが、
実際には病原菌には感染していない確率は$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
2021上智大学理系過去問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)ある病原菌の検査薬は、病原菌に感染しているのに誤って陰性と判断する
確率が20%、感染していないのに、誤って陽性と判断する確率が10%である。
全体の20%がこの病原菌に感染している集団から1つの検体を取り出して、
独立に2回、検査薬で検査する。こんとき、2回とも陰性であったが、実際には
感染している確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$であり、少なくとも1回は陽性であったが、
実際には病原菌には感染していない確率は$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
2021上智大学理系過去問
${\Large\boxed{1}}$(1)ある病原菌の検査薬は、病原菌に感染しているのに誤って陰性と判断する
確率が20%、感染していないのに、誤って陽性と判断する確率が10%である。
全体の20%がこの病原菌に感染している集団から1つの検体を取り出して、
独立に2回、検査薬で検査する。こんとき、2回とも陰性であったが、実際には
感染している確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$であり、少なくとも1回は陽性であったが、
実際には病原菌には感染していない確率は$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
2021上智大学理系過去問
投稿日:2021.09.04