福田の数学〜上智大学2021年TEAP利用理系第1問(1)〜偽陽性偽陰性の条件付き確率 - 質問解決D.B.(データベース)

福田の数学〜上智大学2021年TEAP利用理系第1問(1)〜偽陽性偽陰性の条件付き確率

問題文全文(内容文):
${\Large\boxed{1}}$(1)ある病原菌の検査薬は、病原菌に感染しているのに誤って陰性と判断する
確率が20%、感染していないのに、誤って陽性と判断する確率が10%である。
全体の20%がこの病原菌に感染している集団から1つの検体を取り出して、
独立に2回、検査薬で検査する。こんとき、2回とも陰性であったが、実際には
感染している確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$であり、少なくとも1回は陽性であったが、
実際には病原菌には感染していない確率は$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。

2021上智大学理系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)ある病原菌の検査薬は、病原菌に感染しているのに誤って陰性と判断する
確率が20%、感染していないのに、誤って陽性と判断する確率が10%である。
全体の20%がこの病原菌に感染している集団から1つの検体を取り出して、
独立に2回、検査薬で検査する。こんとき、2回とも陰性であったが、実際には
感染している確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$であり、少なくとも1回は陽性であったが、
実際には病原菌には感染していない確率は$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。

2021上智大学理系過去問
投稿日:2021.09.04

<関連動画>

福田の数学〜北里大学2022年医学部第3問〜確率と漸化式の融合問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1つの箱を置ける台と2つの箱A, Bがある。箱Aには赤玉2個、青玉2個が
入っており、箱Bには白玉3個、青玉1個が入っている。台の上に箱Aを置き、
次の操作を繰り返す。
(操作) 台に置かれている箱から玉を1個取り出して色を調べてから箱に戻し、台
に置かれている箱を台から降ろす。取りだした玉が青球であれば箱Bを台
に置き、それ以外の色の玉であれば箱Aを台に置く。
正の整数nに対し、n回目の操作を終えたときに、台に箱Aが置かれている確率
をa_n、箱Bが置かれている確率をb_nとおく。次の問いに答えよ。
(1) 正の整数nに対し、$b_n$と$a_{n+1}$をそれぞれ $a_n$ を用いて表せ。
(2) 正の整数nに対し、$a_n$をnを用いて表せ。
(3) 正の整数nに対し、1回目からn回目までのn回の操作で白玉を1回も取り出
さない確率をnを用いて表せ。
(4)正の整数nに対し、1回目からn回目までのn回の操作で白玉をちょうど1回
だけ取り出す確率をnを用いて表せ。

2022北里大学医学部過去問
この動画を見る 

早稲田大学 赤n-7個、白7個、5個取り出して赤3白2の確率 Pnを最大にするnを求める Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014早稲田大学過去問題
袋の中に赤玉n-7個、白玉7個の合計n個の玉が入っている。
ただし,$n \geqq 10$とする。この袋から一度に5個の玉を取り出したとき、
赤玉が3個、白玉が2個取り出される確率を$P_n$とする。$P_n$が最大となるnの値を求めよ。
この動画を見る 

数学「大学入試良問集」【5−7 条件付き確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
甲、乙2人でそれぞれ勝つ確率が下の表で示されるゲームを続けて行う。
甲乙のどちらか一方が続けて2度ゲームに勝った時は試合を終了し、2度続けて勝ったものが勝者となる。
$\begin{array}{c|c|c|c|c|c}
& 第1回目のゲーム & 甲が勝ったゲーム & 乙が勝ったゲーム \\
\hline
甲の勝つ確率 & \displaystyle \frac{2}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{1}{5} \\
\hline
乙の勝つゲーム & \displaystyle \frac{1}{3} & \displaystyle \frac{1}{3} & \displaystyle \frac{4}{5}
\end{array}$

(1)
3回以内のゲームで試合が終了する確率を求めよ。

(2)
4回のゲームで試合が終了することが分かっている。
このとき、甲が勝者となっている確率を求めよ。
この動画を見る 

奈良県立医大 びっくり解法

アイキャッチ画像
単元: #大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
長方形は何個あるか?

2015奈良県立医大過去問
この動画を見る 

京都大 確率 確率でも検算できるぞ

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1~n$まで番号の書かれた札が各2枚ずつある。$(n \geqq 3)$
[1][1][2][2]…[n][n]

2$n$枚から3枚選んで順に$x_1,x_2,x_3$とする。
$x_1 \lt x_2 \lt x_3$となる確率は?

出典:2012年京都大学 過去問
この動画を見る 
PAGE TOP