すっきりするただの計算問題 - 質問解決D.B.(データベース)

すっきりするただの計算問題

問題文全文(内容文):
$ x=\sqrt2+1$のとき,
$\dfrac{x^7-x}{x^8+1}$の値を求めよ.
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x=\sqrt2+1$のとき,
$\dfrac{x^7-x}{x^8+1}$の値を求めよ.
投稿日:2022.07.27

<関連動画>

変な方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \left(1+\dfrac{1}{x} \right)^{x+1}=\left(1+\dfrac{1}{11} \right)^{11}$
これを解け.
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(2)。3次関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)座標平面上で、次の3つの3次関数のグラフについて考える。$y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤$
$y=5x^3-x^2+3x+5 \ldots⑥$
④,⑤,⑥の3次関数のグラフには次の共通点がある。
共通点:・y軸との交点のy座標は$\boxed{ソ}$である。
・y軸との交点における接線の方程式は $y=\boxed{タ}\ x+\boxed{チ}$ である。

$a,b,c,d$を0でない実数とする。
曲線$y=ax^3+bx^2+cx+d$上の点$(0, \boxed{ツ})$における接線の方程式は
$y=\boxed{テ}\ x+\boxed{ト}$ である。
次に$f(x)=ax^3+bx^2+cx+d, g(x)=\boxed{テ}\ x+\boxed{ト}$とし、
$f(x)-g(x)$について考える。
$h(x)=f(x)-g(x)$とおく。a,b,c,dが正の実数であるとき、$y=h(x)$のグラフ
の概形は$\boxed{ナ}$である。

(※$\boxed{ナ}$の解答群は動画参照)
$y=f(x)$のグラフと$y=g(x)$のグラフの共有点のx座標は$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$である。
また、xが$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$の間を動くとき、
$|f(x)-g(x)|$の値が最大となるのは、$x=\frac{\boxed{ハヒフ}}{\boxed{ヘホ}}$のときである。

2021共通テスト数学過去問
この動画を見る 

どっちがでかい?問題作成の裏側

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 127^{22}$ vs $33^{31}$
どちらが大きいか?
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(3)〜指数法則と式の値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)実数$a$が$2^a-2^{-a}=3$を満たしているとき、$2^a=\boxed{\ \ ウ\ \ }$であり、

$4^a-4^{-a}=\boxed{\ \ エ\ \ }$
である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

これ説明して

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
XのX乗…これが続いた時の計算方法紹介動画です
この動画を見る 
PAGE TOP