【高校数学】数Ⅲ-17 円と分点③ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-17 円と分点③

問題文全文(内容文):
点$z$が単位円の醜状を動くとき,
次のように表される点$w$はどのような図形をえがくか.

①$w=i(2z+1)$

②$w=(1+i)(z-1)$
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
点$z$が単位円の醜状を動くとき,
次のように表される点$w$はどのような図形をえがくか.

①$w=i(2z+1)$

②$w=(1+i)(z-1)$
投稿日:2017.04.11

<関連動画>

虚数解の6乗が実数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-ax+a=0$は虚数解$\beta$をもち$\beta^6$は実数である.
aの値を求めよ.
この動画を見る 

2022九州大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
kは実数であり,整式f(x)を$ f(x)=x^4+6x^3-kx^2+2kx-64 $で定める.
f(x)=0が虚数解をもつとき,
(1)f(x)はx-2で割り切れることを示せ.
(2)f(x)=0は負の実数解をもつことを示せ.
(3)f(x)=0のすべての実数解が整数で,すべての虚数解の実部と虚部が
ともに整数である.kの値を求めよ.

2022九州大過去問
この動画を見る 

5次式の因数分解 R15中学生はご遠慮ください

アイキャッチ画像
単元: #数Ⅰ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^5+16x+32$
これを因数分解(整数係数)せよ.
この動画を見る 

茨城大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\displaystyle \frac{\sqrt{ 2 }}{2}+\displaystyle \frac{\sqrt{ 2 }}{2}i,\beta=-\displaystyle \frac{\sqrt{ 3 }}{2}+\displaystyle \frac{1}{2}i$
(1)
$\alpha^{n}=\beta^n=1$を満たす最小の自然数$n$


(2)
$n$自然数、$1 \leqq n \leqq 20$
$|\alpha^n+\beta^n|$の最小値とそのときの$n$の値は?

出典:2005年茨城大学 過去問
この動画を見る 

16和歌山県教員採用試験(数学:4番 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
複素数$z=x+yi$が
$1\leqq z+\dfrac{1}{z}\leqq 6$
を満たすとき,
$z$に存在範囲を複素数平面上に図示せよ.
$x,y$は実数とする.
この動画を見る 
PAGE TOP