福田の数学〜慶應義塾大学2024年薬学部第2問〜放物線と円が接する条件と面積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年薬学部第2問〜放物線と円が接する条件と面積

問題文全文(内容文):
$\Large\boxed{2}$ 原点をOとする$xy$平面上に円$x^2$+$y^2$-$12y$=0 があり、円の中心をPとする。
円周上に動点Qがあり、半直線POを始線とする動径PQの回転角を$\theta$とする。
ただし、$\theta$は$-\frac{\pi}{2}$<$\theta$<$\frac{\pi}{2}$を満たす実数とする。
(1)直線PQを表す方程式は、$\theta$=0 のとき$\boxed{\ \ ソ\ \ }$であり、$\theta$≠0 のとき$\boxed{\ \ タ\ \ }$である。
(2)点Qを通る放物線$y$=$ax^2$+$b$ をおく。点Qにおける放物線の接線は、点Qにおける円の接線と一致する。ただし、$a$, $b$は実数であり、$a$は$a$>0 を満たす。
(i)$\theta$≠0 のとき$a$と$b$を$\theta$で表すと、$a$=$\boxed{\ \ チ\ \ }$, $b$=$\boxed{\ \ ツ\ \ }$ である。
(ii)$\theta$=$-\frac{\pi}{3}$ のとき、直線PQと放物線で囲まれる部分の面積は$\boxed{\ \ テ\ \ }$である。
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 原点をOとする$xy$平面上に円$x^2$+$y^2$-$12y$=0 があり、円の中心をPとする。
円周上に動点Qがあり、半直線POを始線とする動径PQの回転角を$\theta$とする。
ただし、$\theta$は$-\frac{\pi}{2}$<$\theta$<$\frac{\pi}{2}$を満たす実数とする。
(1)直線PQを表す方程式は、$\theta$=0 のとき$\boxed{\ \ ソ\ \ }$であり、$\theta$≠0 のとき$\boxed{\ \ タ\ \ }$である。
(2)点Qを通る放物線$y$=$ax^2$+$b$ をおく。点Qにおける放物線の接線は、点Qにおける円の接線と一致する。ただし、$a$, $b$は実数であり、$a$は$a$>0 を満たす。
(i)$\theta$≠0 のとき$a$と$b$を$\theta$で表すと、$a$=$\boxed{\ \ チ\ \ }$, $b$=$\boxed{\ \ ツ\ \ }$ である。
(ii)$\theta$=$-\frac{\pi}{3}$ のとき、直線PQと放物線で囲まれる部分の面積は$\boxed{\ \ テ\ \ }$である。
投稿日:2024.03.27

<関連動画>

対数の大小比較

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$\log_2 3$ VS $\log_7 18$
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第6問〜3次関数の増減と最大値と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{6}}$ $a$,$b$,$p$を実数とする。関数$f(x)$=$x^3$+$ax^2$+$bx$+17 は$x$=$p$で極大値、$x$=$-4p$で極小値をとり、$f(-2p)$=-17 を満たすとする。
(1)$a$,$b$,$p$の値、および$f(x)$の極大値$M$、極大値$m$を、それぞれ求めよ。
(2)(1)で求めた$a$,$b$および0≦$t$≦5 を満たす実数$t$に対して、区間0≦$x$≦$t$ における|$f(x)$|の最大値を$g(t)$とする。$t$の値について場合分けをして、それぞれの場合に$g(t)$を求めよ。
(3)(2)で求めた$g(t)$に対して、定積分$I$=$\displaystyle\int_0^5g(t)dt$ を求めよ。
この動画を見る 

04岡山県教員採用試験(数学:6-(2) 積分)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#不定積分・定積分#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6} - (2)$
$\displaystyle \int_{}^{} (\sin^{-1} x)^2 \ dx$を計算せよ.
この動画を見る 

基本問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4-2x^3+3x^2-2x+1=0$のとき,
$\dfrac{x^{2222}}{x^{2224}+1}$の値を求めよ.
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(6)切り取られる弦の長さと中点(応用2)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=4$ $\cdots$①, 直線$y=m(x-4)$ $\cdots$②がある。次の問いに答えよ。
(1)①②が異なる2点で交わるように定数$m$の値の範囲を求めよ。
(2)(1)のとき、②が①によって切り取られる弦の中点の座標を$m$を用いて表せ。
(3)(1)で求めた範囲を$m$が動くとき、(2)の中点はどんな図形を描くか。
この動画を見る 
PAGE TOP