【高校数学】三角比④~90°- θ,180° - θ考え方,イメージ~ 3-4【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】三角比④~90°- θ,180° - θ考え方,イメージ~ 3-4【数学Ⅰ】

問題文全文(内容文):
△ABCの3つの内角$\angle A$、$\angle B$、$\angle C$の大きさをそれぞれA、B、Cとするとき、
次の等式が成り立つことを証明せよ。

sin$\displaystyle \frac{A}{2}$=cos$\displaystyle \frac{B+C}{2}$
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
△ABCの3つの内角$\angle A$、$\angle B$、$\angle C$の大きさをそれぞれA、B、Cとするとき、
次の等式が成り立つことを証明せよ。

sin$\displaystyle \frac{A}{2}$=cos$\displaystyle \frac{B+C}{2}$
投稿日:2018.12.04

<関連動画>

福田のおもしろ数学483〜直角に曲がった廊下を曲がれる棒の長さの最大値

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

棒を水平に持って、幅$a$の廊下から、

それに直角な幅$b$の廊下に曲がりたい。

これが可能であるための

棒の長さの最大値を求めて下さい。

図は動画内参照
この動画を見る 

島根大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#島根大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
$2^m!$が$2^n$で割り切れるnの最大値をN(m)とする。(m,n自然数)
(1)N(m)をmの式で表せ。
(2)N(m)が素数ならばmも素数であることを証明せよ。
この動画を見る 

【高校数学】数Ⅰ-43 2次関数の最大・最小②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=2x^2-3(-2 \leqq x \leqq 3)$
②$y=-3x^2+6x+2(-1 \leqq x \leqq 3)$
③$y=x^2-4x+2(-2 \lt x \leqq 4)$
④$y=\displaystyle \frac{1}{3}x^2+2x+2(-2 \leqq x \lt 1)$
この動画を見る 

「二次関数の最大最小 場合分け②】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a \gt b0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(3)$k=m(a)$のグラフをかけ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(4)$K=M(a)$のグラフをかけ。
この動画を見る 

【中学数学】2次方程式の解の公式の証明~中3以上はできないとヤバい~ 3-2【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#2次関数#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式の解の公式の証明
この動画を見る 
PAGE TOP