大学入試問題#713「さすがに合同式を利用」 早稲田商学部(2016) 合同式 - 質問解決D.B.(データベース)

大学入試問題#713「さすがに合同式を利用」 早稲田商学部(2016) 合同式

問題文全文(内容文):
$2^{100}$を$2016$で割ったときの余りを求めよ。

出典:2016年早稲田大学商学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$2^{100}$を$2016$で割ったときの余りを求めよ。

出典:2016年早稲田大学商学部 入試問題
投稿日:2024.01.23

<関連動画>

【理数個別の過去問解説】1996年度東北大学 数学 第3問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東北大学(1996年)
xy平面の点$(1,0)$を中心とする半径1の円をCとし、第1象限にあって、x軸とCに接する円C₁を考える。次に、x軸、$C、C_1$で囲まれた部分にあって、x軸とこれら2円に接する円を$C_2$とする。以下同様に、$C_{n+1}(n=1,2,…)$をx軸、$C、C_{n}$で囲まれた部分にあって、これらに接する円とする。
(1)$C_1$の中心の座標をaとするとき、C₁の半径$r_1$をaを用いて表そう。
(2)$C_n$の半径$r_n$をaとnを用いて表そう。
この動画を見る 

大学入試問題#44 明治大学(2021) 複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$|z|=2$のとき
$|z^2+iz-1|$のとりうる値の範囲を求めよ。

出典:2021年明治大学 入試問題
この動画を見る 

明治大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n,17n-20,19x-20$がいずれも素数となる2以上の自然数$n$を全て求めよ。

出典:明治大学 過去問
この動画を見る 

大学入試問題#813「見通しは立てやすい」 #京都大学(1972) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の式で定められる関数$F(x)$に対して、
$\displaystyle \lim_{ x \to \infty } [F(x) -log\ x]$を求めよ。
ただし、$x \gt 0$とする。
$F(x)=\displaystyle \int_{0}^{x} \displaystyle \frac{1}{(t+1)(t+3)}dt$

出典:1972年京都大学 入試問題
この動画を見る 

大学入試問題#685「一言・・・むずい」 早稲田商学部(2018) #整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の条件を満たす正の整数の組$(a,b,n)$をすべて求めよ。
$n \geq 2$で、$b$は素数
$a^2=b^n+225$

出典:2018年早稲田大学商学部 入試問題
この動画を見る 
PAGE TOP