【受験対策】数学-小問4 - 質問解決D.B.(データベース)

【受験対策】数学-小問4

問題文全文(内容文):
次の各問いに答えなさい.

①$\sqrt{45(n+1)}$の値が自然数となるような自然数$n$のうち,
最も小さいものを求めなさい.

②2次方程式$2x^2 + ax -12 = 0$ の解の1つが$-4$であるとき,
もう1つの解を求めなさい.

③$\sqrt{75}-\sqrt n=\sqrt{27}$を満たす自然数$n$を求めなさい.

④箱の中に同じ大きさの白玉がたくさん入っている.
標本調査を行い,その箱の中にある白玉の数を推定することにした.
箱の中から白玉を100個取り出して,その全部に印をつけてもとに戻し,
よくかき混ぜた後,箱の中から白玉を30個取り出したところ,
その中に印のついた白玉が5個あった.
この箱の中にはおよそ何個の白玉が入っていたと考えられるか.
答えなさい.
単元: #数学(中学生)#中3数学#平方根#2次方程式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$\sqrt{45(n+1)}$の値が自然数となるような自然数$n$のうち,
最も小さいものを求めなさい.

②2次方程式$2x^2 + ax -12 = 0$ の解の1つが$-4$であるとき,
もう1つの解を求めなさい.

③$\sqrt{75}-\sqrt n=\sqrt{27}$を満たす自然数$n$を求めなさい.

④箱の中に同じ大きさの白玉がたくさん入っている.
標本調査を行い,その箱の中にある白玉の数を推定することにした.
箱の中から白玉を100個取り出して,その全部に印をつけてもとに戻し,
よくかき混ぜた後,箱の中から白玉を30個取り出したところ,
その中に印のついた白玉が5個あった.
この箱の中にはおよそ何個の白玉が入っていたと考えられるか.
答えなさい.
投稿日:2016.09.03

<関連動画>

【高校受験対策/数学】死守-89

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#空間図形#確率#2次関数#円#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守89

①$-3-(-7)$を計算しなさい。

②$8-(-3)^2$を計算しなさい。

③$(-9ab^2)×2a÷(-3ab)$を計算しなさい。

④$(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})$を計算しなさい。

⑤$x^2-3x-18$を因数分解しなさい。

⑥絶対値が$4$より小さい整数の個数を求めなさい。

⑦右の図のア~ウは、関数$y=-2x^2、y=x^2$および$y=\frac{1}{2}x^2$のグラフを同じ座標軸を使ってかいたものです。
$y=x^2$のグラフをア~ウから一つ選びなさい。

⑧右の図のような、半径$5cm$、中心角$90°$のおうぎ形$OAB$があります。
このおうぎ形を直線$OA$を回転の軸として1回転させてできる立体の体積を求めなさい。

⑨大小2つのさいころを同時に投げるとき、出る目の数の和がちょうど$5$以下となる確率を求めなさい。
ただしさいころの$1$から$6$までの目の出方は同様に確からしいものとします。

この動画を見る 

√9=?

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
√9を、√を使わずに表しなさい

√9の平方根を求めよ。
この動画を見る 

【見た目よりカンタン…!】文字式:日本大学第三高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#平方根#文字と式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
x=√6,y=√2のとき
√(x-y)/√(x+y) - √(x+y)/√(x-y)
この式の値を求めなさい
この動画を見る 

【高校受験対策/数学】死守67

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#平行と合同#確率#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守67

① 2次方程式を$x^3+3x-1=0$を解きなさい。

②$\sqrt{24}\div\sqrt{3}-\sqrt{2}$を計算しなさい。

③関数$y=\frac{3}{x}$について、$x$の変域が$1 \leqq x \leqq 6$のとき、$y$の変域を答えなさい。


$x$枚の空の封筒と$y$本の鉛筆がある。
封筒の中に鉛筆を4本ずつ入れると8本足りず、3本ずつ入れると12本余る。
このとき$x$と$y$の値を求めなさい。


右の図のような、$AD=2cm$、$BC=5cm$、$AD/\!/BC$である台形$ABCD$があり、対角線$AC$、$BD$の交点を$E$とする。
点$E$から辺$DC$上に辺$BC$と線分$EF$が平行となる点$F$をとるとき、線分$EF$の長さを答えなさい。


1から6までの目のついた大、小2つのさいころを同時に投げたとき、大きいさいころの出た目の数を$a$、小さいさいころの出た目の数を$b$とする。
このとき、出た目の数の積$a×b$の値が25以下となる確率を求めなさい。


右の図のように直線$l$と2つの点$A$、$B$がある。
直線$l$上にあって、2つの点$A$、$B$を通る円の中心$P$を、定規とコンパスを用いて作図しなさい。
ただし作図に使った線は消さずに残しておくこと。
この動画を見る 

【高校受験対策/数学】死守-95

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$2-(-5)-9$を計算せよ。
②$\frac{3x-y}{4}-\frac{x+2y}{3}$を計算せよ。
③$a^2b×(-3b)÷6ab^2$を計算せよ。
④$\frac{12}{\sqrt2}-\sqrt32$を計算せよ 。

⑤50本の鉛筆を、7人の生徒に1人$a$本ずつ配ると、$b$本余った。
このとき、$b$を$a$の式で表せ。

⑥2次方程式$(x-4)(x+2)=3x-2$を解け。

⑦$a$は正の数とする。
次の文字式のうち、式の値が$a$の値よりも小さくなる文字式はどれか。
次のアーエからすべて選び、その記号で書け。

ア $a+(-\frac{1}{2})$
イ $a-(-\frac{1}{2})$
ウ $a×(-\frac{1}{2})$
エ $a÷(-\frac{1}{2})$

⑧関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq -1$のとき、
$y$の変域は$-3 \leqq y \leqq 12$である。このときの$a$の値を求めよ。

⑨右の図のように、2つの半直線$AB,AC$があり、半直線$AB$上に点$D$をとる。
2つの半直線$AB,AC$の両方に接する円のうち、 点$D$で半直線$AB$と接する円の中心$P$を定規・コンパスを使い作図によって求めよ。
この動画を見る 
PAGE TOP