二つの円と共通接線 - 質問解決D.B.(データベース)

二つの円と共通接線

問題文全文(内容文):
$CD=?$
$\angle ACB=?$
*図は動画内参照
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$CD=?$
$\angle ACB=?$
*図は動画内参照
投稿日:2021.07.14

<関連動画>

指数方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$5^{2x^2-1}-3・5^{(x+1)(x+2)}-2・5^{6(x+1)}=0$
この動画を見る 

福田の数学〜共通テスト対策にもってこい〜明治大学2023年全学部統一ⅠⅡAB第3問〜四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#空間における垂直と平行と多面体(オイラーの法則)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 一辺の長さが6の正四面体ABCDにおいて、点Aから3点B,C,Dを含む平面に垂線AHを下ろす。また、辺ABを1:2に内分する点をP、辺ACを2:1に内分する点をQ、辺ADを$t$:1-$t$に内分する点をRとする。ただし、
0<$t$<1 とする。
(1)AHの長さは$\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}$ であり、正四面体ABCDの体積は$\boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オ\ \ }}$ である。
(2)AHと三角形PQRの交点をXとすると、$\overrightarrow{AX}$=$\boxed{\ \ カ\ \ }\overrightarrow{AH}$ である。
(3)三角形PQRの面積は$\sqrt{\boxed{\ \ キク\ \ }t^2-\boxed{\ \ ケコ\ \ }t+\boxed{\ \ サシ\ \ }}$ である。
(4)$t$=$\frac{1}{2}$ のとき、四面体APQRの体積は$\boxed{\ \ ス\ \ }\sqrt{\boxed{\ \ セ\ \ }}$で、点Aから3点P,Q,Rを通る平面に垂線AYを下ろすと、AYの長さは$\frac{\boxed{\ \ ソ\ \ }\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}$ である。
この動画を見る 

福田の数学〜千葉大学2022年理系第5問〜n個のサイコロの目の積の確率

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。n個のサイコロを同時に投げ、出た目の積をMとおく。
(1)Mが2でも3でも割り切れない確率を求めよ。
(2)Mが2で割り切れるが、3でも4でも割り切れない確率を求めよ。
(3)Mが4では割り切れるが、3では割り切れない確率を求めよ。

2022千葉大学理系過去問
この動画を見る 

地道にやれば出るよね。パッと出す方法もいろいろありそう

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^4+x^3+x^2+x+1=0$のとき,
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x}+\dfrac{x^4}{1+x^3}$の値を求めよ.
この動画を見る 

場合の数 エレガントに解こう

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロの目の数だけ時計回りに進む.4回振って$A$にいる場合の数を求めよ.
この動画を見る 
PAGE TOP