三倍角の公式を複素数の掛け算(ド・モアブルの定理)で簡単に導く - 質問解決D.B.(データベース)

三倍角の公式を複素数の掛け算(ド・モアブルの定理)で簡単に導く

問題文全文(内容文):
三倍角の公式を複素数の掛け算(ド・モアブルの定理)で簡単に導きます.
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
三倍角の公式を複素数の掛け算(ド・モアブルの定理)で簡単に導きます.
投稿日:2018.02.03

<関連動画>

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)整数$k$に対して、$x$の2次方程式$x^2+kx+k+35=0$の解を$\alpha_k,\beta_k$とおく。
ただし、方程式が重解をもつときは$\alpha_k=\beta_k$である。また$U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}$を全体集合とし、その部分集合$A=\{k|k \in U$かつ$\alpha_k,\beta_k$はともに実数で$\alpha_k\neq \beta_k\}$
$B=\{k|k \in U$かつ$\alpha_k,\beta_k$の実数はともに2より大きい$\}$
$C=\{k|k \in U$かつ$\alpha_k,\beta_k$の実部と虚部はすべて整数$\}$
を考える。このとき$n(A)=\boxed{\ \ (か)\ \ },$$n(A \cap B)=\boxed{\ \ (き)\ \ },$$n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },$
$n(A \cap C)=\boxed{\ \ (け)\ \ },$$n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }$である。ただし有限集合$X$に対してその要素の個数を$n(X)$で表す。また$\bar{ A }$は$A$の補集合である。

2021慶應義塾大学医学部過去問
この動画を見る 

複素関数論④(極限値)*17(1)-(3) 高専数学

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
複素関数論④(極限値)を解説していきます.
この動画を見る 

【高校数学】数Ⅲ-7 複素数の積と商①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
⑦$z_1=2\left(\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\right),z_2=5\left(\cos\dfrac{2}{3}\pi+i\sin\dfrac{2}{3}\pi\right)$のとき,
$z_1 z_2$と,$\dfrac{z_1}{z_2}$を求めよう.
この動画を見る 

【高校数学】数Ⅲ-8 複素数の積と商②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\alpha=1-i,\beta=\sqrt3+i$とする.
ただし,偏角は$0\leqq \theta \lt 2\pi$とする.

①$\alpha\beta,\dfrac{\alpha}{\beta}$をそれぞれ極形式で表そう.
②$arg\beta^4, \left\vert\dfrac{\alpha^2}{\beta^2}\right \vert$をそれぞれ求めよう.
この動画を見る 

立教大 複素数基本

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\cos \dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
$a=Z+\dfrac{1}{Z}$
$b=Z^2+\dfrac{1}{Z^2}$
$c=Z^2+\dfrac{1}{Z^3}$
$a^3+b^3+c^3-3ab$の値を求めよ.

2021立教大過去問
この動画を見る 
PAGE TOP