数学「大学入試良問集」【13−2 部分分数分解による和】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【13−2 部分分数分解による和】を宇宙一わかりやすく

問題文全文(内容文):
数列$2,6,12,20,30,42,・・・$について、$n$を自然数として以下の問いに答えよ。
(1)
第$n$項$a_n$と、初項から第$n$項までの和$S_n$を求めよ。

(2)
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。

(3)
$\displaystyle \frac{1}{S_1}+\displaystyle \frac{1}{S_2}+\displaystyle \frac{1}{S_3}+・・・+\displaystyle \frac{1}{S_n}$を求めよ。
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$2,6,12,20,30,42,・・・$について、$n$を自然数として以下の問いに答えよ。
(1)
第$n$項$a_n$と、初項から第$n$項までの和$S_n$を求めよ。

(2)
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}+・・・+\displaystyle \frac{1}{a_n}$を求めよ。

(3)
$\displaystyle \frac{1}{S_1}+\displaystyle \frac{1}{S_2}+\displaystyle \frac{1}{S_3}+・・・+\displaystyle \frac{1}{S_n}$を求めよ。
投稿日:2021.05.27

<関連動画>

この答えあっているのか?指数関数と等差数列 自治医科大

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{x+2} , 2^x , 2^4$がこの順で等差数列をなすとき、x=?
(自治医科大学(改))
この動画を見る 

階乗に関する問題 巣鴨高校(改)

アイキャッチ画像
単元: #数学(中学生)#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$1!+2!+3!+4!+5!+\cdots +18!+19!+20!$
を計算した結果の下2ケタを求めよ。

巣鴨高等学校(改)
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(2)〜3項間漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)数列$\{a_n\}$が次の条件を満たしている。

$a_1=a_{2025}=0,a_{n+1}-2a_n+a_{n-1}=-1 \ (n=2,3,4,\cdots)$

このとき、一般項$a_n$は$a_n=\boxed{イ}$である。

$2025$年早稲田大学商学部過去問題
この動画を見る 

14和歌山県教員採用試験(数学:4番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$a_1=5,a_{n+1}=\dfrac{5a_n+6}{a_4+4}$とする.

(1)$b_n=\dfrac{a_n+\beta}{a_n+\alpha}\ (\alpha \gt \beta)$
$b_n$が等比数列となるような$\alpha,\beta$の値を求めよ.

(2)$a_n$を求めよ.
この動画を見る 

福田の数学〜京都大学2025文系第3問〜確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$n$は正の整数とする。

$1$枚の硬貨を投げ、

表が出たら$1$、裏が出たら$2$と記録する。

この試行を$n$回繰り返し、

記録された順に数字を左から

並べて$n$桁の数$X$を作る。

ただし、数の表し方は十進法とする。

このとき、$X$が$6$で割り切れる確率を求めよ。

$2025$年京都大学文系過去問題
この動画を見る 
PAGE TOP