【理数個別の過去問解説】2012年度京都大学 数学 第3問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2012年度京都大学 数学 第3問解説

問題文全文(内容文):
京都大学(文理共通)2012年第3問
実数x,yが条件x²+xy+y²=6を満たしながら動くとき、x²y+xy²-x²-2xy-y²+x+y がとりうる値の範囲を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:14 問題解説
5:48 今回のポイント
5:58 名言

単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(文理共通)2012年第3問
実数x,yが条件x²+xy+y²=6を満たしながら動くとき、x²y+xy²-x²-2xy-y²+x+y がとりうる値の範囲を求めよ。
投稿日:2020.08.27

<関連動画>

福田の数学〜筑波大学2024理系第3問〜3次関数のグラフと接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=x(x+1)(x-1)$とする。座標平面において、曲線$y=f(x)$を$C$とし、曲線$C$上の点$(t,f(t))$における接線を$L$とする。以下の問いに答えよ。
(1) 直線$L$の方程式を$t$を用いて表せ。
(2) $t \neq 0$のとき、直線$L$と曲線$C$の共有点で、点$(t,f(t))$とは異なるものを$(a,f(a))$とする。$a$を$t$を用いて表せ。また$t$が$0$を除いた実数を動くとき、$f'(t)f'(a)$の最小値を求めよ。
(3) 次の条件Aを満たすような実数$t$の範囲を求めよ。
(A) 曲線$C$上の点$(t,f(t))$における接線が直線$L$と直交するような実数$s$が存在する。
この動画を見る 

【高校数学】三角関数⑧~グラフで解く最大値・最小値~ 4-10【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の関数の最大値と最小値を求めよ。また、そのときのθの値を求めよ。
(1) y=sinθ-1(0≦θ≦$\displaystyle \frac{7π}{4}$)
(2) y=2cos(θ+$\displaystyle \frac{π}{3}$)(0≦θ≦π)
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(1)〜対数計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)$\log_3\sqrt6\ -\log_3\frac{2}{3}+\log_3\sqrt2\ $を有理数で表すと$\boxed{\ \ ア\ \ }$である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田のおもしろ数学241〜e^πとπ^eの大小

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$e^πとπ^eの大小を比較して下さい。$
この動画を見る 

【高校数学】毎日積分32日目【共通テスト直前特別編】【毎日17時投稿】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
偶関数・奇関数の積分について解説していきます.
この動画を見る 
PAGE TOP