二次関数と台形 桃山学院(改) 2021 B - 質問解決D.B.(データベース)

二次関数と台形 桃山学院(改) 2021 B

問題文全文(内容文):
台形ABCD=5のときa=?(a>0)
*図は動画内参照

2021桃山学院高等学校
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
台形ABCD=5のときa=?(a>0)
*図は動画内参照

2021桃山学院高等学校
投稿日:2021.02.20

<関連動画>

半円と正方形

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形#円
指導講師: 数学を数楽に
問題文全文(内容文):
正方形の面積=?
*図は動画内参照
この動画を見る 

【保存版】三平方の定理の計算の技

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三平方の定理を使って直角三角形の斜辺以外の長さを求める方法を解説します。
この動画を見る 

【数学】中高一貫校用問題集幾何:三平方の定理:平面図形 正四面体

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図のような1辺の長さが2㎝の正四面体ABCDにおいて、3辺AD,BC,CDの中点をそれぞれL,M,Nとする。
(1)線分LMの長さを求めなさい。
(2)△LMNの面積を求めなさい。
この動画を見る 

高等学校入試予想問題:富山県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平行と合同#文字と式#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
(1)$6a^2b\times 2b\div 3ab$を計算せよ.
(2)$\sqrt{32}-\sqrt{18}+\sqrt2$を計算せよ.
(3)$x^2-5x-24=0$を解け.
(4)「$am$のリボンから.$bcm$切り取ると残りの長さは$2m$より短い.」
  不等式で表せ.
(5)$\angle x$は何度か.

$\boxed{2}$
(1)7番目の図形と16番目の図形の面積をそれぞれ求めよ.
(2)$n$を偶数とするとき,$n$番目の図形と$(2n+1)$番目の図形の面積の差が$331cm^2$である.$n$はいくつか.

$boxed{3}$
$A,B,C,D,E$は円$O$上の5点である.
$AC,BD$は直径であり,$AD\parallel BD$,交点は$F,G$である.

(1)$CE=?,OG=?$
(2)$FG=?$
(3)$\triangle ACF$と$\triangle ODA$の面積比は?



この動画を見る 

【高校受験対策/数学】死守62

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#2次方程式#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守62

①$1+(-0.2)\times 2$を計算しなさい。

②方程式$\frac{2x+4}{3}=4$を解きなさい。

③$a=\frac{1}{2},b=3$のとき、 $3(a-2b)-5(3a-b)$の値を 求めなさい。

④$x$についての方程式
$x^2-2ax+3=0$の解の1つが$-1$であるとき、もう1つの解を求めなさい。

⑤1個$a$ kgの品物3個と1個$b$ kgの品物2個の合計の重さは20kg以上である。
この数量の関係を不等式で表しなさい。

⑥右の図のように、側面がすべて長方形の正六角柱がある。
このとき、辺ABとねじれの位置にある辺の数を求めなさい。

⑦家から$a$ m離れた博物館まで、行きは毎分60m、帰りは毎分90mの速さで往復した。
往復の平均の速さは分速( )mである。( )にあてはまる数を求めなさい。

⑧次のア~エのことがらについて、逆が正しいものを1つ選んで記号を書きなさい。

ア 正三角形はすべての内角が等しい三角形である。
イ 長方形は対角線がそれぞれの中点で交わる四角形である。
ウ $x \geqq 5$ならば$x \gt 4$である。
エ $x=1$ならば$x^2=1$である。

⑨右図のように直線$l$上に2点O,Pがある。
点Oを回転の中心として点Pを時計回りに45°回転移動させた点Qを、定規とコンパスを用いて作図しなさい。
ただし作図に用いた線は消さないこと。
この動画を見る 
PAGE TOP