問題文全文(内容文):
Q.
右の図で、点A・Bは関数$y=x^2$のグラフ上の点、点Cは関数$y=\frac{1}{4}x^2$のグラフ上の点である。また、AC・BCはそれぞれ$x$軸、$y$軸に平行である。
次の問いに答えなさい。ただし3点、A・B・Cは$x \gt 0$にあるものとする。
①点Aの座標が$(2,4)$のとき、点Bの座標を求めよ。
②AC=BCのとき、点Aの座標を求めよ。
Q.
右の図で、点A・Bは関数$y=x^2$のグラフ上の点、点Cは関数$y=\frac{1}{4}x^2$のグラフ上の点である。また、AC・BCはそれぞれ$x$軸、$y$軸に平行である。
次の問いに答えなさい。ただし3点、A・B・Cは$x \gt 0$にあるものとする。
①点Aの座標が$(2,4)$のとき、点Bの座標を求めよ。
②AC=BCのとき、点Aの座標を求めよ。
単元:
#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
Q.
右の図で、点A・Bは関数$y=x^2$のグラフ上の点、点Cは関数$y=\frac{1}{4}x^2$のグラフ上の点である。また、AC・BCはそれぞれ$x$軸、$y$軸に平行である。
次の問いに答えなさい。ただし3点、A・B・Cは$x \gt 0$にあるものとする。
①点Aの座標が$(2,4)$のとき、点Bの座標を求めよ。
②AC=BCのとき、点Aの座標を求めよ。
Q.
右の図で、点A・Bは関数$y=x^2$のグラフ上の点、点Cは関数$y=\frac{1}{4}x^2$のグラフ上の点である。また、AC・BCはそれぞれ$x$軸、$y$軸に平行である。
次の問いに答えなさい。ただし3点、A・B・Cは$x \gt 0$にあるものとする。
①点Aの座標が$(2,4)$のとき、点Bの座標を求めよ。
②AC=BCのとき、点Aの座標を求めよ。
投稿日:2019.01.03