式の値 虚数解 - 質問解決D.B.(データベース)

式の値 虚数解

問題文全文(内容文):
3次方程式$x^3+1 = 0$の虚数解の1つをαとするとき
$α^{300} + α^{200} + α^{100} + \frac {1}{α^{100}} + \frac {1}{α^{200}} +\frac {1}{α^{300}} = ?$

甲南大学
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
3次方程式$x^3+1 = 0$の虚数解の1つをαとするとき
$α^{300} + α^{200} + α^{100} + \frac {1}{α^{100}} + \frac {1}{α^{200}} +\frac {1}{α^{300}} = ?$

甲南大学
投稿日:2022.07.05

<関連動画>

京都大2021 素数という条件は必要か

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$が素数なら$P^4+14$は素数でないことを示せ.

2021京都大過去問
この動画を見る 

指数方程式! 中学生も解ける!?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{777^{777}-777^{776}}{777^{777x}}=776$のとき
x=?
この動画を見る 

2024次方程式の解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2024}+2x^{2023}+3x^{2022}+$$ ……+2024x+2025=0$の$2024$個の解を
$\alpha,\alpha_{2},\alpha_{3}……\alpha_{2024}$とする

$(1-\displaystyle \frac{1}{\alpha_{1}})(1-\displaystyle \frac{1}{\alpha_{2}})……(1-\displaystyle \frac{1}{\alpha_{2024}})$の値を求めよ

出典:OnLineMath Contest
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第1問(4)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)($\log_29$)($\log_3x$)-$\log_25$=2 を解くとx=$\boxed{\ \ キ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

素数問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q,r$は異なる素数である.
$p^2=q^2+8r^2$を解け.
この動画を見る 
PAGE TOP