証明:沖縄県高校入試~全国入試問題解法 - 質問解決D.B.(データベース)

証明:沖縄県高校入試~全国入試問題解法

問題文全文(内容文):
入試問題 沖縄県の高校

$\triangle AOE \equiv \triangle COF$となる
ことを証明しなさい。

点O:対角線$AC$、$BD$の交点 (平行四辺形$ABCD$)
点E:辺$AB$上の点
点F:直線$EO$と辺$CD$との交点
※根拠となることがらを必ず書くこと!
※図は動画内参照
単元: #数学(中学生)#平行と合同#相似な図形#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 沖縄県の高校

$\triangle AOE \equiv \triangle COF$となる
ことを証明しなさい。

点O:対角線$AC$、$BD$の交点 (平行四辺形$ABCD$)
点E:辺$AB$上の点
点F:直線$EO$と辺$CD$との交点
※根拠となることがらを必ず書くこと!
※図は動画内参照
投稿日:2021.02.21

<関連動画>

【数学】中2-59 仮定と結論

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
『$a=b,b=c$ならば、$a=c$である』の文の、
仮定は①____、結論は②____。
ちなみに証明するとき、仮定は③____アイテムで、
結論は④____アイテムなんだ!

◎次の文の仮定には____、結論には‗‗‗‗‗‗‗を引こう!

⑤$\triangle ABC \equiv \triangle DEF$ならば、$\angle BAC=\angle EDF$である。

⑥$ℓ//m,m//n$ならば、$ℓ//n$である。

⑦2つの直線が平行ならば、錯角は等しい。

⑧$a=b$ならば、$ac=bc$である。
この動画を見る 

【中2 数学】  中2-60  証明のしくみ

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 証明のしくみ
以下の問に答えよ
[ポイント]
[1] 仮定と結論をチェック!
↓ 仮定:①___ 結論:②___
[2] どれとどれの合同をやる?
↓ ③___と___
[3] 同じってわかっている角度と辺に印を付ける!
↓ <図ABCDO> ④図のなかに印つけて
[4] 合同条件を決める!
↓ ⑤______
[5] 書く!!

<図ABCDO>
AO = CO、∠ OAB =∠ OCD ならば、AB = CD であることを証明しよう!!
[宣言] _________で
[理由] ___より_____・・・①、_____・・・②、
 ___より_____・・・③
[合同条件] ①、②、③より_________から_________
[結論] ___より_________ 
※図は動画内参照
この動画を見る 

中2数学「合同な図形」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~合同な図形~

例題 次の図の2つの四角形は合同です。

(1) 2つの四角形が合同であることを記号≡を使って表しなさい。

(2) 次の辺の長さや角の大きさを求めなさい。
① 辺EH ② 辺DC ③ ∠A

※図は動画内参照
この動画を見る 

中2数学「三角形の合同証明①」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~三角形の合同証明①~

例1 右の図で、AB=CB、AD=CDならば△ABD=△CBDであることを証明しなさい。

例2 右の図で、OA=OB, AD//CBならば、△AOD≡△BOCであることを証明 しなさい。

※図は動画内参照
この動画を見る 

【高校受験対策】数学-死守32

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#平行と合同#確率#速さ#速さその他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-2+5$を計算しなさい。

②$3 + 3 ^ 4 \div (- 9)$を計算しなさい。

③$4(2a - 3) - 2(3a - 5)$を計算しなさい。

④$\dfrac{x-y}{6}-\dfrac{x+y}{8}$を計算しなさい。

⑤$3\sqrt8 - \sqrt{50} + sqrt{18}$を計算しなさい。

⑥2次方程式$(x + 2)(x - 2) = 2(3x - 2)$を解きなさい。

⑦かずよしくんは、自宅から1800mはなれた学校に登校するため、
午前7時30分に家を出発した。
最初は毎分60mの速さで歩いていたが、遅刻しそうになったので、
途中から毎分100mの速さで走ったところ、午前7時56分に学校に着いた。
かずよしくんが走った道のりは何mか、求めなさい。

⑧赤球3個と白球3個が入っている袋がある。
この袋の中から、同時に2個の球を取り出すとき、
赤球と白球が1個ずつである確率を求めなさい。
ただし、どの球を取り出すことも、同様に確からしいものとする。

⑨左下の図1で、正六角形$ABCDEF$に、2つの平行な直線$\ell、m$が交わっており、
交点はそれぞれ$G、H、I、J$である。
$\angle GHF=78°$のとき、$\angle IJE$の大きさを求めなさい。

⑩ある中学校の1年A組25人と1年B組25人の休日の学習時間を調べた。
下の図2、 図3は、それぞれの結果をヒストグラムに表したもので、
2つの図から「1年A組は1年B組 より、$\Box$」と読みとることができた。
$\Box$にあてはまるものとして適切なものを、 下のア~エから1つ選び、記号で書きなさい。

ア→学習時間の分布の範囲が小さい
イ→最頻値を含む階級の度数が多い
ウ→中央値を含む、階級の度数が少ない
エ→学習時間が150分以上の人数が多い

図は動画内参照
この動画を見る 
PAGE TOP