オーストラリア数学オリンピックAustralian math Olypmpiad - 質問解決D.B.(データベース)

オーストラリア数学オリンピックAustralian math Olypmpiad

問題文全文(内容文):
$2^{13}+2^{10}+2^x=y^2$
自然数x,yを求めよ.

オーストラリア数学オリンピック過去問
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{13}+2^{10}+2^x=y^2$
自然数x,yを求めよ.

オーストラリア数学オリンピック過去問
投稿日:2023.03.04

<関連動画>

良問!!整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a=? b=? c=?
a,b,cは自然数でa<b<c
(a+b)(b+c)(c+a)=350
この動画を見る 

整数問題 戸山高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nは素数
$\frac{100}{n+3}$が整数となるnの値をすべて求めよ。

戸山高等学校
この動画を見る 

群馬大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\fcolorbox{black}{}{$a$}\fcolorbox{black}{}{$b$}\fcolorbox{black}{}{$c$}\fcolorbox{black}{}{$d$}=(\fcolorbox{black}{}{$a$}\fcolorbox{black}{}{$b$}+\fcolorbox{black}{}{$c$}\fcolorbox{black}{}{$d$})^2$

出典:1978年群馬大学 過去問
この動画を見る 

中学レベル 倍数の見分け方の証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は1~9の整数である.
$XX+YY+ZZ=XYZ$
これを解け.
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$を次のように定める。
$a_1=1,  a_{n+1}=a_n^2+1  (n=1,2,3,\ldots)$
(1)正の整数nが3の倍数のとき、$a_n$は5の倍数となることを示せ。
(2)k,nを正の整数とする。$a_n$が$a_k$の倍数となるための必要十分条件をk,nを
用いて表せ。
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系過去問
この動画を見る 
PAGE TOP