福田の数学〜神戸大学2022年理系第1問〜3項間の漸化式と極限 - 質問解決D.B.(データベース)

福田の数学〜神戸大学2022年理系第1問〜3項間の漸化式と極限

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 数列\left\{a_n\right\}をa_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)によって定める。\\
以下の問いに答えよ。\\
(1)全ての自然数nについてa_{n+1}=\frac{2}{\sqrt{a_n}}が成り立つことを示せ。\\
(2)数列\left\{b_n\right\}をb_n=\log a_n (n=1,2,3,\ldots)によって定める。\\
b_nの値をnを用いて表せ。\\
(3)極限値\lim_{n \to \infty}a_nを求めよ。
\end{eqnarray}

2022神戸大学理系過去問
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 数列\left\{a_n\right\}をa_1=1,a_2=2,a_{n+2}=\sqrt{a_{n+1}・a_n} (n=1,2,3,\ldots)によって定める。\\
以下の問いに答えよ。\\
(1)全ての自然数nについてa_{n+1}=\frac{2}{\sqrt{a_n}}が成り立つことを示せ。\\
(2)数列\left\{b_n\right\}をb_n=\log a_n (n=1,2,3,\ldots)によって定める。\\
b_nの値をnを用いて表せ。\\
(3)極限値\lim_{n \to \infty}a_nを求めよ。
\end{eqnarray}

2022神戸大学理系過去問
投稿日:2022.04.24

<関連動画>

室蘭工業大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'17室蘭工業大学過去問題
$a_1=0,a_2=2$
$a_{n+2}=8(n+2)a_{n+1}-7(n^2+3n+2)a_n$
(1)$b_n=\frac{a_n}{n!}$として$b_n$を求めよ
(2)$a_n$を求めよ
この動画を見る 

東京海洋大 漸化式と3次関数

アイキャッチ画像
単元: #数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$a_1=1$であり,$a_{n+1}=27^{n^2-3n-9}a_n$とする.

(1)一般項$a_n$を求めよ.
(2)$a_n$が最小となる値を求めよ.

2013東京海洋大過去問
この動画を見る 

鳥取大 3項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人鳥取大学

$a_1=1,$$a_2=2$
$a_n$$_+$$_2$$a_{n+2}a_{n}=2(a_{n+1})^2$

$(1)$一般項$a_n$
$(2)$初項から第$n$項までの積

この動画を見る 

漸化式 山梨大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 山梨大学 過去問

$a_1=6$
$a_{n+1}=\frac{n+3}{n+1}a_n+1$
$b_n=\frac{a_n}{(n+1)(n+2)}$
この動画を見る 

福田の数学〜九州大学2023年文系第4問PART1〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 
PAGE TOP