福田の数学〜名古屋大学2024年文系第2問〜放物線と直線の関係 - 質問解決D.B.(データベース)

福田の数学〜名古屋大学2024年文系第2問〜放物線と直線の関係

問題文全文(内容文):
$\Large\boxed{2}$ $t$を0でない実数として、$x$の関数$y$=$-x^2$+$tx$+$t$ のグラフを$C$とする。
(1)$C$上において$y$座標が最大となる点Pの座標を求めよ。
(2)Pと点O(0,0)を通る直線を$l$とする。$l$と$C$がP以外の共有点Qを持つために$t$が満たすべき条件を求めよ。また、そのとき、点Qの座標を求めよ。
(3)$t$は(2)の条件を満たすとする。A(-1,-2)として、$X$=$\displaystyle\frac{1}{4}t^2$+$t$ とおくとき、AP$^2$-AQ$^2$を$X$で表せ。また、AP<AQとなるために$t$が満たすべき条件を求めよ。
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $t$を0でない実数として、$x$の関数$y$=$-x^2$+$tx$+$t$ のグラフを$C$とする。
(1)$C$上において$y$座標が最大となる点Pの座標を求めよ。
(2)Pと点O(0,0)を通る直線を$l$とする。$l$と$C$がP以外の共有点Qを持つために$t$が満たすべき条件を求めよ。また、そのとき、点Qの座標を求めよ。
(3)$t$は(2)の条件を満たすとする。A(-1,-2)として、$X$=$\displaystyle\frac{1}{4}t^2$+$t$ とおくとき、AP$^2$-AQ$^2$を$X$で表せ。また、AP<AQとなるために$t$が満たすべき条件を求めよ。
投稿日:2024.05.29

<関連動画>

【置き換え方を学ぶ!!】高校で出てくる展開(乗法の公式)と解き方を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
展開(乗法の公式)と解き方について解説します。
$(2x-3y)^2$
$(3x+4y)(3x-4y)$
$(x-2)(x+3)$
$(a+b+c)^2$
$(3a+1)^2(3x-1)^2$
$(4x^2+y^2)(2x+y)(2x-y)$
この動画を見る 

気付けば一瞬!!円と角の和

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x + \angle y = ?$
*図は動画内参照
この動画を見る 

分数が入っている因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2- \frac{5}{3}x - \frac{2}{3}$
この動画を見る 

3通りで解説!分母の有理化どうする? 高知中央 (高知)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt 6 + \frac{18}{\sqrt 6}$
高知中央高等学校
この動画を見る 

3通りで解ける!因数分解 早稲田本庄

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2+b^2-3c^2+2(ab-bc-ca)$を因数分解せよ。

早稲田大学 本庄高等学院
この動画を見る 
PAGE TOP