福田の数学〜明治大学2022年全学部統一入試12AB第3問〜漸化式の図形への応用 - 質問解決D.B.(データベース)

福田の数学〜明治大学2022年全学部統一入試12AB第3問〜漸化式の図形への応用

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (1)三角形ABCの内接円が辺ABと接する点をPとし、\hspace{150pt}\\
辺BCと接する点をQとし、辺CAと接する点をRとする。\\
\angle Aの大きさをθとすると、\angle APR=\boxed{\ \ ア\ \ }であり、\angle PQR=\boxed{\ \ ア\ \ }\ である。\\
\\
\boxed{\ \ ア\ \ }の解答群\\
⓪0\ \ \ ①\frac{\pi}{2}\ \ \ ②θ\ \ \ ③\frac{θ}{2}\ \ \ ④\frac{\pi}{2}-θ\ \ \ \\ ⑤\frac{\pi-θ}{2}\ \ \ ⑥\pi-\frac{θ}{2}\ \ \ ⑦\pi-θ\ \ \ ⑧\frac{\pi-3θ}{2}\ \ \ ⑨\frac{\pi}{2}-3θ\ \ \ \\
\\
(2)三角形T_1の3つの角のうち、角の大きさが最小のものは\frac{\pi}{6}で、\\
最大のものは\frac{\pi}{2}であるとする。n=1,\ 2,\ 3,\ ...について、三角形T_nの内接円をO_nとし、\\
T_nとO_nとが接する3つの点を頂点とするような三角形をT_{n+1}とする。\\
このとき、三角形T_2の3つの角のうち、角の大きさが最小のものは\frac{\pi}{\boxed{\ \ イ\ \ }}\ で、\\
最大のものは\frac{\boxed{\ \ ウ\ \ }\ \pi}{\boxed{\ \ エオ\ \ }}\ である。n=1,\ 2,\ 3,\ ...について、三角形T_nの3つの角のうち、\\
角の大きさが最小のものをa_nとし、最大のものをb_nとする。三角形T_{n+1}について、\\
a_{n+1}=\boxed{\ \ カ\ \ },\ \ \ b_{n+1}=\boxed{\ \ キ\ \ }\\
と表せる。この式より\\
a_n+b_n=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\pi,\ \ \ b_n-a_n=\frac{\pi}{\boxed{\ \ コ\ \ }・\boxed{\ \ サ\ \ }^{n-1}}\\
であり、a_n=\frac{\pi}{\boxed{\ \ シ\ \ }}(1-\frac{1}{\boxed{\ \ ス\ \ }^n}) \ \ \ \ \ \ \ である。\\
\\
\boxed{\ \ カ\ \ }、\boxed{\ \ キ\ \ }の解答群\\
⓪\frac{a_n}{2}\ \ \ ①\frac{b_n}{2}\ \ \ ②\frac{\pi}{2}-a_n\ \ \ ③\frac{\pi}{2}-b_n\ \ \ ④\frac{\pi-a_n}{2}\ \ \ \\ ⑤\frac{\pi-b_n}{2}\ \ \ ⑥\pi-\frac{a_n}{2}\ \ \ ⑦\pi-\frac{b_n}{2}\ \ \ ⑧\pi-a_n\ \ \ ⑨\pi-b_n\ \ \ \\
\end{eqnarray}
単元: #大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数列#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (1)三角形ABCの内接円が辺ABと接する点をPとし、\hspace{150pt}\\
辺BCと接する点をQとし、辺CAと接する点をRとする。\\
\angle Aの大きさをθとすると、\angle APR=\boxed{\ \ ア\ \ }であり、\angle PQR=\boxed{\ \ ア\ \ }\ である。\\
\\
\boxed{\ \ ア\ \ }の解答群\\
⓪0\ \ \ ①\frac{\pi}{2}\ \ \ ②θ\ \ \ ③\frac{θ}{2}\ \ \ ④\frac{\pi}{2}-θ\ \ \ \\ ⑤\frac{\pi-θ}{2}\ \ \ ⑥\pi-\frac{θ}{2}\ \ \ ⑦\pi-θ\ \ \ ⑧\frac{\pi-3θ}{2}\ \ \ ⑨\frac{\pi}{2}-3θ\ \ \ \\
\\
(2)三角形T_1の3つの角のうち、角の大きさが最小のものは\frac{\pi}{6}で、\\
最大のものは\frac{\pi}{2}であるとする。n=1,\ 2,\ 3,\ ...について、三角形T_nの内接円をO_nとし、\\
T_nとO_nとが接する3つの点を頂点とするような三角形をT_{n+1}とする。\\
このとき、三角形T_2の3つの角のうち、角の大きさが最小のものは\frac{\pi}{\boxed{\ \ イ\ \ }}\ で、\\
最大のものは\frac{\boxed{\ \ ウ\ \ }\ \pi}{\boxed{\ \ エオ\ \ }}\ である。n=1,\ 2,\ 3,\ ...について、三角形T_nの3つの角のうち、\\
角の大きさが最小のものをa_nとし、最大のものをb_nとする。三角形T_{n+1}について、\\
a_{n+1}=\boxed{\ \ カ\ \ },\ \ \ b_{n+1}=\boxed{\ \ キ\ \ }\\
と表せる。この式より\\
a_n+b_n=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\pi,\ \ \ b_n-a_n=\frac{\pi}{\boxed{\ \ コ\ \ }・\boxed{\ \ サ\ \ }^{n-1}}\\
であり、a_n=\frac{\pi}{\boxed{\ \ シ\ \ }}(1-\frac{1}{\boxed{\ \ ス\ \ }^n}) \ \ \ \ \ \ \ である。\\
\\
\boxed{\ \ カ\ \ }、\boxed{\ \ キ\ \ }の解答群\\
⓪\frac{a_n}{2}\ \ \ ①\frac{b_n}{2}\ \ \ ②\frac{\pi}{2}-a_n\ \ \ ③\frac{\pi}{2}-b_n\ \ \ ④\frac{\pi-a_n}{2}\ \ \ \\ ⑤\frac{\pi-b_n}{2}\ \ \ ⑥\pi-\frac{a_n}{2}\ \ \ ⑦\pi-\frac{b_n}{2}\ \ \ ⑧\pi-a_n\ \ \ ⑨\pi-b_n\ \ \ \\
\end{eqnarray}
投稿日:2022.08.29

<関連動画>

東京海洋大 漸化式と3次関数

アイキャッチ画像
単元: #数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$a_1=1$であり,$a_{n+1}=27^{n^2-3n-9}a_n$とする.

(1)一般項$a_n$を求めよ.
(2)$a_n$が最小となる値を求めよ.

2013東京海洋大過去問
この動画を見る 

東北大文系 虚数のナイスな問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#数列#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ pは0でない実数である.x^2-px+5p=0の解を\alpha,\betaとする.
(1)\alpha^5+\beta^5=p\5となるpを求めよ.
(2)\alphaは虚数で\alpha^5が実数となるpを求めよ.$
この動画を見る 

福井大(医)漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$であり,$n\geqq 2$とする.
$a_{n+1}-\dfrac{4n+2}{n+1}an+\dfrac{4n-4}{n}a_{n-1}=0$

(1)$b_n=a_{n+1}-\dfrac{2n}{n+1}a_n(n\geqq 1)$,$b_n$を$n$で表せ.
(2)$a_n$を求めよ.

福井大(医)過去問
この動画を見る 

福田の数学〜北里大学2022年医学部第3問〜確率と漸化式の融合問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}1つの箱を置ける台と2つの箱A, Bがある。箱Aには赤玉2個、青玉2個が\hspace{40pt}\\
入っており、箱Bには白玉3個、青玉1個が入っている。台の上に箱Aを置き、\hspace{20pt}\\
次の操作を繰り返す。\hspace{224pt}\\
(操作) 台に置かれている箱から玉を1個取り出して色を調べてから箱に戻し、台\\
に置かれている箱を台から降ろす。取りだした玉が青球であれば箱Bを台\\
に置き、それ以外の色の玉であれば箱Aを台に置く。\hspace{74pt}\\
正の整数nに対し、n回目の操作を終えたときに、台に箱Aが置かれている確率\hspace{17pt}\\
をa_n、箱Bが置かれている確率をb_nとおく。次の問いに答えよ。\hspace{70pt}\\
(1) 正の整数nに対し、b_nとa_{n+1}をそれぞれ a_n を用いて表せ。\hspace{80pt}\\
(2) 正の整数nに対し、a_nをnを用いて表せ。\hspace{143pt}\\
(3) 正の整数nに対し、1回目からn回目までのn回の操作で白玉を1回も取り出\hspace{22pt}\\
さない確率をnを用いて表せ。\hspace{190pt}\\
(4)正の整数nに対し、1回目からn回目までのn回の操作で白玉をちょうど1回\hspace{21pt}\\
だけ取り出す確率をnを用いて表せ。\hspace{165pt}
\end{eqnarray}
この動画を見る 

千葉大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$n\geqq 2$であり,$a_n=\dfrac{(1+\sqrt3)^n+(1-\sqrt3)^n}{4}$である.
$a_n$は整数であり,$a_n$を$3$で割った余りは$2$であることを示せ.

2013千葉大過去問
この動画を見る 
PAGE TOP