千葉大 複素数 極形式 7乗根 - 質問解決D.B.(データベース)

千葉大 複素数 極形式 7乗根

問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$

(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$

(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$

(1)(2)それぞれ値を求めよ

出典:千葉大学 過去問
単元: #大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#千葉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$

(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$

(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$

(1)(2)それぞれ値を求めよ

出典:千葉大学 過去問
投稿日:2019.09.24

<関連動画>

長崎大 3乗根 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
長崎大学過去問題
(1)$x^3=1$を解け
(2)$α=m+\sqrt7ni$とすると、$α^3=225+2\sqrt7i$が成り立つ。整数m,nを求めよ。
(3)$β^3=225+2\sqrt7i$を満たす複素数βをすべて求めよ。
この動画を見る 

数検準1級1次過去問【2020年12月】4番:複素数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{4} \alpha=-2+i$で,$\beta=-3-i$である.これを解け.

(1)$\left| \dfrac{\alpha}{\beta} \right|$を求めよ.
(2)$\left( -\frac{\alpha}{\beta} \right)^{45}$の偏角$\theta$を求めよ.
$(0\leqq \theta \lt 2\pi)$
この動画を見る 

学習院大 三次方程式と複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04学習院大学過去問題
a実数
$f(x)=4x^3-4ax^2+(a^2+3)x+a^2+4a+7$
(1)任意のaについてf(m)=0が成り立つ実数m
(2)f(x)=0の3つの解を複素数平面上に図示したとき、それらが正三角形になるようなaの値
この動画を見る 

大学入試問題#228 愛知教育大学(2012) 3乗根の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#愛知教育大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\sqrt[ 3 ]{ 5\sqrt{ 2 }+7 }-\sqrt[ 3 ]{ 5\sqrt{ 2 }-7 }$

(1)$\alpha^3$を$\alpha$で表せ
(2)$\alpha$は整数であることを示せ

出典:2012年愛知教育大学 入試問題
この動画を見る 

【高校数学】数Ⅲ-5 複素数の極形式①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の複素数を極形式で表そう.
ただし,偏角$\theta$は$0\leqq \theta \lt 2\pi$とする.

④$1+i$
⑤$-2$
この動画を見る 
PAGE TOP