千葉大 複素数 極形式 7乗根 - 質問解決D.B.(データベース)

千葉大 複素数 極形式 7乗根

問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$

(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$

(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$

(1)(2)それぞれ値を求めよ

出典:千葉大学 過去問
単元: #大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#千葉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$

(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$

(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$

(1)(2)それぞれ値を求めよ

出典:千葉大学 過去問
投稿日:2019.09.24

<関連動画>

瞬殺!かいぶん数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$n^8+2n^7+3n^6+4n^5+5n^4+4n^3+3n^2+$
$2n+1$は素数でないことを示せ.
この動画を見る 

近畿大 茨城大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数C#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$x^4-Px^2+P^2-P-2=0$が相異4実根をもつPの範囲

茨城大学過去問題
$x^3=i$を解け
この動画を見る 

【数Ⅱ】複素数の計算【簡単なようで間違えやすい計算】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ iと等しいものを2つ選べ.
\dfrac{1}{i^3},\sqrt{-\dfrac{1}{2}}\sqrt{-2}i,\dfrac{1}{\sqrt{-1}},\dfrac{-3+2i}{2+3i}$
この動画を見る 

名古屋大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'92名古屋大学過去問題
$α=\frac{1-\sqrt7 i}{2},β=\frac{1+\sqrt7 i}{2}$
(1)次の等式を示せ。n自然数
$α^{n+1}+β^{n+1}=α^n+β^n-2(α^{n-1}+β^{n-1})$
(2)$α^n+β^n$が奇数であることを示せ。n自然数
この動画を見る 

東京電機大 複素数のべき乗

アイキャッチ画像
単元: #複素数と方程式#複素数#指数関数#数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+2i)^n=x_n+y_ni$
(1)$x^2_n+y^2_n$を求めよ.
(2)$x_{n+2}$を$x_{n+1}$と$x_n$で表せ.
(3)$x_n$と$y_n$の最大公約数を求めよ.

東京電機大過去問
この動画を見る 
PAGE TOP