【高校数学】数Ⅲ-106 媒介変数表示された関数の導関数 - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-106 媒介変数表示された関数の導関数

問題文全文(内容文):
$x$と$y$の関係が次の式で与えられるとき、
$\dfrac{dy}{dx}$を$t$で表せ。

①$x=\dfrac{1}{1+t^2},y=\dfrac{t}{1+t^2}$

②$x=a(t-\sin t),y=(1-\cos t)\quad (a\gt 0)$
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x$と$y$の関係が次の式で与えられるとき、
$\dfrac{dy}{dx}$を$t$で表せ。

①$x=\dfrac{1}{1+t^2},y=\dfrac{t}{1+t^2}$

②$x=a(t-\sin t),y=(1-\cos t)\quad (a\gt 0)$
投稿日:2018.05.26

<関連動画>

高専数学 微積I #242(2) 媒介変数表示曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq 2\pi$とする.
曲線$x=e^{-t}\cos t,y=e^{-t}\sin t$
の長さ$\ell$を求めよ.
この動画を見る 

【実はカンタン!】媒介変数表示を3分で解説!〔数学、高校数学〕

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#図形と方程式#媒介変数表示と極座標#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
$t$を実数とするとき、
  $x=2t+1$
  $y=4t^2+2t+1$
で表される点$(x,y)$の描く軌跡を求めよ。
この動画を見る 

【数C】【平面上の曲線】極座標が(2,0)である点Aを通り始線OXに垂直な直線をlとし、極Oを端点とする半直線OP上に、OP・OQ=4を満たす点Qをとるとき、点Qの軌跡の極方程式を求めよ。

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
極座標が(2,0)である点Aを通り始線OXに垂直な直線をlとし、l上の動点をPとする。極Oを端点とする半直線OP上に、OP・OQ=4を満たす点Qをとるとき、点Qの軌跡の極方程式を求めよ。
この動画を見る 

高専数学 微積I #258 媒介変数表示曲線の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$1 \leqq t \leqq 2$である.
曲線$x=t+\dfrac{1}{t},y=t-\dfrac{1}{t}$と
$x$軸,直線$x=\dfrac{5}{2}$で
囲まれた図形の面積$S$を求めよ.
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#三角関数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ a,bを定数とし、関数$f(x)=x^2+ax+b$ とする。方程式$f(x)=0$の2つの解$\alpha,\beta\\$
が次式で与えられている。
$\alpha=\frac{\sin\theta}{1+\cos\theta}$, $\beta=\frac{\sin\theta}{1-\cos\theta}\\$
ここで$\theta$は、$0 \lt \theta \lt \pi$の定数である。次の問いに答えよ。
$(1)a,b$を$\theta$を用いて表せ。
$(2)\theta$が$0$ $\lt \theta \pi$で変化するとき、放物線$y=f(x)$の頂点の軌跡を求めよ。
$(3)\int_0^{2\sin\theta}f(x)dx=0$ となる$\theta$の値を全て求めよ。


2021早稲田大学社会科学部過去問
この動画を見る 
PAGE TOP