【1/1】中3冬特訓8日目 - 質問解決D.B.(データベース)

【1/1】中3冬特訓8日目

問題文全文(内容文):
Q.
右の図のように、$AB=\sqrt{10}cm$、$BC=3\sqrt{2}cm$、$CA=4cm$の $△ABC$の外接円の中心を$o$とし、直線$AO$と外接円との交点のうち、$A$と異なるものを$D$とする。
また、$A$から辺$BC$へひいた垂線と$BC$との交点を$H$とし、$AD$と$BC$の交点を$E$とする。

①$BH$の長さを求めよ。
②外接円の半径を求めよ。
③$BE:EC$を求めよ。
単元: #中3数学
指導講師: とある男が授業をしてみた
問題文全文(内容文):
Q.
右の図のように、$AB=\sqrt{10}cm$、$BC=3\sqrt{2}cm$、$CA=4cm$の $△ABC$の外接円の中心を$o$とし、直線$AO$と外接円との交点のうち、$A$と異なるものを$D$とする。
また、$A$から辺$BC$へひいた垂線と$BC$との交点を$H$とし、$AD$と$BC$の交点を$E$とする。

①$BH$の長さを求めよ。
②外接円の半径を求めよ。
③$BE:EC$を求めよ。
投稿日:2019.01.01

<関連動画>

バリバリの高校入試問題 巣鴨高校 座標平面上のひし形

アイキャッチ画像
単元: #中3数学#2次関数#巣鴨高等学校
指導講師: 数学を数楽に
問題文全文(内容文):
Dの座標=?
この動画を見る 

関数って結局なんなん?

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
関数についての動画です。
例にとっているのは比例ですが,一次関数,二次関数,三次関数になっても考え方は同じです。
この動画を見る 

【中学数学】2次関数の問題~2024年度北海道公立高校入試大問3~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅰ#2次関数#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ユキさんたちのクラスでは、数学の授業で関数のグラフについてコンピュータを使って学習しています。次の問いに答えなさい。
問1 先生が提示した画面1には、関数$y=x^{ 2 }$のグラフと、このグラフ上の2点A、Bを通る直線が表示されています。点Aの$x$座標は3、点Bの$x$座標は-2です。点Oは原点とします。
ユキさんは、画面1を見て、2点A、Bを通る直線の式を求めたいと考え、求め方について、次のような見通しを立てています。

ユキさんの見通し
2点A、Bを通る直線の式を求めるには、2点A、Bの座標がわかれば良い。

次の(1)、(2)に答えなさい。
(1)点Aの$y$座標を求めなさい。
(2)ユキさんの見通しを用いて、2点A、Bを通る直線の式を求めなさい。

問2 △PQRが直角二等辺三角形になる時の$t$の値を求めなさい。

先生が提示した画面2には2つの関数$y=2x^{ 2 }$・・・①,$y=\frac{1}{2}x^{ 2 }$・・・②のグラフが表示されています。①のグラフ上に点Pがあり、点Pの$x$座標は$t$です。点Qは、点Pと$y$軸について対称な点です。また、点Rは、点Pを通り、$y$軸に平行な直線と②のグラフとの交点です。点Oは原点とし、$t$>0とします。

ユキさんたちは、点Pを①のグラフ上で動かすことで、△PQRがどのように変化するかについて、話し合っています。
ユキさん「点Pを動かすと、点Qと点Rも同時に動くね。」
ルイさん「このとき、△PQRはいつでも直角三角形になるね。」
ユキさん「・・・あれ?△PQRが直角に等辺三角形に見えるときがあるよ?」
ルイさん「本当に直角二等辺三角形になるときがあるのかな。」
ユキさん「じゃあ、△PQRが直角二等辺三角形になるときの点Pの座標を求めてみようか。」
ルイさん「点Pの座標を求めるには、$t$の値がわかればいいね。」

△PQRが直角二等辺三角形になるときの$t$の値を求めなさい。
この動画を見る 

いやらし○式の値 大阪桐蔭

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=\frac{\sqrt 3 -1 }{2}$ , $y= \sqrt 2$
$x^2 + y^2 + x=?$

大阪桐蔭高等学校
この動画を見る 

【中学数学】平方根:√2=1.414を使って近似値を求めよう!根号の変形方法は?

単元: #数学(中学生)#中3数学#平方根
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt2=1.414$のとき、次の値を求めよ。
(1)$\sqrt{50}$
(2)$\sqrt{18}$
(3)$\sqrt{200}$
(4)$\sqrt{20000}$
(5)$\sqrt{0.02}$
この動画を見る 
PAGE TOP