解けるように作られた方程式 - 質問解決D.B.(データベース)

解けるように作られた方程式

問題文全文(内容文):
x,y,zを実数とするとき,これを解け.
$x+y+z=2(\sqrt x +\sqrt{y-1}+\sqrt{z-2})$

中国中等学校過去問
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,y,zを実数とするとき,これを解け.
$x+y+z=2(\sqrt x +\sqrt{y-1}+\sqrt{z-2})$

中国中等学校過去問
投稿日:2022.11.02

<関連動画>

福田の数学〜慶應義塾大学2021年看護医療学部第2問(3)〜絶対値の付いた2次不等式の解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(3)aを正の定数とし、不等式
$|x^2-ax+3| \leqq 1$
の解を実数の範囲で考える。
0 $\lt a \lt \boxed{\ \ ナ\ \ }$のとき、この不等式の解は存在しない。
$\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }$のとき、この不等式の解は
ある実数$p,q$によって$p \leqq x \leqq q$と表される。
$a \gt \boxed{\ \ ニ\ \ }$のときこの不等式の解は$\boxed{\ \ ヌ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

【中学数学】平方根・ルートの計算演習~乗法公式2~ 2-9.5【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$(\sqrt{5}-\sqrt{2})^2$

2⃣
$(\sqrt{3}-5)^2$

3⃣
$(\sqrt{3}+3\sqrt{5})^2$
この動画を見る 

【数Ⅰ】【図形と計量】測量への応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
先端がAの塔ABの高さを測るために,∠BCD=90°,CD=15m となる2地点C, D を地面上にとったところ,∠BDC=30° で,点CでのAの仰角が60°であった。塔の高さ AB を求めよ。
この動画を見る 

【数Ⅰ】【図形と計量】平行四辺形 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDにおいて,AB=3,AD=5,∠B=60°のとき,対角線AC,BDの長さを求めよ。
この動画を見る 

奇数の平方の逆数の和になぜかあれが登場

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.$n\to \infty$である.

$\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+・・・・・・$
$+\dfrac{1}{(2n-1)^2}=\dfrac{\Box^2}{8}$
この動画を見る 
PAGE TOP