神戸大(医)整式 有理数と無理数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

神戸大(医)整式 有理数と無理数 Mathematics Japanese university entrance exam

問題文全文(内容文):
$a$は正の無理数 $X,Y$は有理数

$X=a^3+3a^2-14a+6$
$Y=a^2-2a$

(1)
$x^3+3x^2-14x+6$を$x^2-2x$で割った余りと商

(2)
$X,Y,a$の値


出典:神戸大学 過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$は正の無理数 $X,Y$は有理数

$X=a^3+3a^2-14a+6$
$Y=a^2-2a$

(1)
$x^3+3x^2-14x+6$を$x^2-2x$で割った余りと商

(2)
$X,Y,a$の値


出典:神戸大学 過去問
投稿日:2019.02.06

<関連動画>

【数Ⅰ】【2次関数】2次関数の平行移動1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=-3x^2$を、頂点が次の点になるように平行移動するとき、移動後の放物線の方程式を求めよ。
(1)$(1,2)$
(2)$(-2,3)$
この動画を見る 

福田のわかった数学〜高校1年生第47回。三角形への応用(4)内心

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
右の図において$I$は$\triangle ABC$の内心.$AB=5,BC=10,CA=7$のとき,$AI=?$
この動画を見る 

ルートと素数 大阪偕星学園

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{p(q+1)}$が1ケタの素数になるようなp,qを求めよ。(p,q:素数)

大阪偕星学園高等学校
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第2問〜絶対値の付いた関数の最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$a\lt b \lt c$を満たす実数の定数に対して、

すべての実数を定義域とする$x$の関数

$f(x)=\vert x-a \vert + \vert x-b \vert + \vert x-c \vert $を定める。

このとき、$5x+4f(x)$の最小値は

$\boxed{ク}a + \boxed{ケ}b + \boxed{コ}c$である。

また、$f(x)$の最小値が$20$で、

$f(c)=28$かつ$f(10)=31$を満たす$a$の値は

$\boxed{サ}$と$\boxed{シ}$である。

ただし、$\boxed{サ} \lt \boxed{シ}$とする。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

3桁の数字が1089になる証明

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
任意の3桁の数とそれを逆から読んだ数のうち大きい方から小さい方を引いた3桁の数と、これを逆から読んだ3桁の数の和が1089になることを証明する動画です
この動画を見る 
PAGE TOP