変な方程式 - 質問解決D.B.(データベース)

変な方程式

問題文全文(内容文):
$ \left(1+\dfrac{1}{x} \right)^{x+1}=\left(1+\dfrac{1}{11} \right)^{11}$
これを解け.
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \left(1+\dfrac{1}{x} \right)^{x+1}=\left(1+\dfrac{1}{11} \right)^{11}$
これを解け.
投稿日:2022.10.10

<関連動画>

中学生向け指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを求めよ.
$10^{2n}-10^{n+2}+999=\overbrace{ 999\cdots +9}^{n+1桁}$
この動画を見る 

【数Ⅱ】【指数対数】指数計算1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a$\gt$0,b$\gt$0とする。次の式を計算せよ。
(1)(a$^{\frac{1}{2}}$+a$^{\frac{1}{4}}$b$^{\frac{1}{4}}$+b$^{\frac{1}{2}}$)(a$^{\frac{1}{2}}$-a$^{\frac{1}{4}}$b$^{\frac{1}{4}}$+b$^{\frac{1}{2}}$)
(2)(a$^{\frac{x}{3}}$-b$^{-\frac{x}{3}}$)(a$^{\frac{2x}{3}}$+a$^{\frac{x}{3}}$b$^{-\frac{x}{3}}$+b$^{-\frac{2x}{3}}$)

(1)($\sqrt[4]{6}$+$\sqrt[4]{5}$)($\sqrt[4]{6}$-$\sqrt[4]{5}$)
(2)($\sqrt[3]{4}$+$\sqrt[3]{2}$)$^3$+($\sqrt[3]{4}$-$\sqrt[3]{2}$)$^3$

(1) $\sqrt[5]{-32}$
(2) $\sqrt[3]{-\frac{1}{64}}$
(3) $\sqrt[3]{54}$$\times$2$\sqrt[3]{-2}$$\times$$\sqrt[3]{16}$
(4) $\sqrt[3]{-24}$+$\sqrt[3]{81}$)$+$$\sqrt[3]{-3}$

x$^{\frac{1}{3}}$+x$^{-\frac{1}{3}}$=3のとき、x+x$^{-1}$, x$^{3}$+x$^{-3}$の値を求めよ。
この動画を見る 

11神奈川県教員採用試験(数学:6番 指数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
6⃣$4^x+9^y=a^2$
$2^{x+1}+3^{2y}$の最大値を求めよ。(a>1)
この動画を見る 

東京理科大 指数方程式 実数解の条件 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'07東京理科大学過去問題
$9^x+9^{-x}-(a+1)(3^x+3^{-x})-2a^2+8a-4$
$=0$
(1)$a=-5$のとき、解け
(2)実数解をもつaの範囲
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$xy平面上に、xの関数
$f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2$
のグラフ$y=f(x)$がある。$y=f(x)$が任意のaに対して
通る定点をP、点Pにおける接線が$y=f(x)$と交わる点をQとおく。
(1)点Pの座標は$\boxed{\ \ ツ\ \ }$であり、点Pにおける接線の方程式は$y=\boxed{\ \ テ\ \ }$である。
(2)$a=5$のとき、$y=f(x)$上の点における接線は、$x=\boxed{\ \ ト\ \ }$において傾きが
最小になる。
(3)$x=\boxed{\ \ ト\ \ }$において$f(x)$が極値をとるとき、$a=\boxed{\ \ ナ\ \ }$であり、
点$(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))$を$S$とおくと、三角形SPQの面積は$\boxed{\ \ ニ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP