中2数学「直角三角形の合同証明①」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「直角三角形の合同証明①」【毎日配信】

問題文全文(内容文):
例1
次の図のように,$\angle AOB$の二等分線上の点$P$から,
2辺$OA,OB$にそれぞれ垂線$PQ,PR$をひくと,$\triangle PQO \equiv \triangle PRO$であることを証明しなさい.

例2
次の図のように,$\angle AOB$の内部の点$P$から,
2辺$OA,OB$にそれぞれひいた垂線$PQ,PR$の長さが等しいとき,
$\triangle PQO \equiv \triangle PRO$であることを証明しなさい.
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
次の図のように,$\angle AOB$の二等分線上の点$P$から,
2辺$OA,OB$にそれぞれ垂線$PQ,PR$をひくと,$\triangle PQO \equiv \triangle PRO$であることを証明しなさい.

例2
次の図のように,$\angle AOB$の内部の点$P$から,
2辺$OA,OB$にそれぞれひいた垂線$PQ,PR$の長さが等しいとき,
$\triangle PQO \equiv \triangle PRO$であることを証明しなさい.
投稿日:2023.04.10

<関連動画>

図形の折り返し 聖望学園(埼玉)

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
CD=?
*図は動画内参照

聖望学園高等学校
この動画を見る 

30秒で数学の基礎を1つ身に付ける相棒~全国入試問題解法 #Shorts #高校入試

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
y=4(x+2)・・・・① \\
6x-y=-10・・・・②
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

【高校受験対策/数学】図形-37

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形37

Q
右の図は、$AB=$$\sqrt{3}$ cm、$BC=3$ cmの平行四辺形$ABCD$である。
辺$AD$上に$AE=1$ cmとなる点$E$をとり、線分$BD$と線分$CE$の交点を$F$とするとき、次の各問いに答えなさい。

問1
$△ABE$と$△CBD$が相似になることを次のように証明した。
(あ)には角、(い)には数、(う)には辺、(え)にはことばをそれぞれ入れなさい。

【証明】
$△ABE$と$△CBD$について
仮定より$\angle BAE=$ (あ) ・・・①
また$AE:CD=1:$ (い)  ・・・➁
$AB:$ (う) $=\sqrt{3}:3$ 
$=1:$ (い)   ・・・③

➁、③から
$AE:CD=AB:$ (う)  ・・・④

①、④から、2組の辺の(え)とその間の角がそれぞれ等しいので
$\triangle ABE \backsim \triangle CBD$

問2
$△BCF$の面積は$△ABE$の面積の何倍か求めなさい。
この動画を見る 

【数学】中2-63 証明チャレンジ Lv.3

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数学 中2 証明チャレンジ Lv.3
以下の問に答えよ
下の図で、OCは∠AOBの二等分線です。
OA = OB のとき、AC = BC になることを証明しよう!
<図>
[宣言] [1]____で
[理由] [2]____より [3]____‥①
[4]____より [5]____‥②
[6]____より [7]____‥③
[合同条件] ①、②、③より
[8]____________から [9]________
[結論] [10]____より [11]________
※図は動画内参照


この動画を見る 

【数学】中2-5 いろいろな多項式の計算②

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【レベル3】
計算せよ。
①$\displaystyle \frac{x-3y}{2}-\displaystyle \frac{5x+2y}{3}$
通分したら②____を使おう!!
③$x+3y-\displaystyle \frac{2x+7y}{3}$
④$\displaystyle \frac{1}{8}(7)(-2y)+\displaystyle \frac{1}{2}(x+2y)$
⑤$\displaystyle \frac{3}{2}(x-3y)-\displaystyle \frac{1}{3}(7x-2y)$
この動画を見る 
PAGE TOP