【数学ゴールデン】2巻と5巻で紹介された整数問題を解いてみた #数学ゴールデン #数学オリンピック #整数問題 - 質問解決D.B.(データベース)

【数学ゴールデン】2巻と5巻で紹介された整数問題を解いてみた #数学ゴールデン #数学オリンピック #整数問題

問題文全文(内容文):
黒板に1以上100以下の整数が1つずつ書かれている。
黒板から整数$a,b$を選んで消し、新たに$a^2b^2+3$と$a^2+n^2+2$の最大公約数を書くという操作を繰り返し行う。
黒板に書かれている整数が1つだけになったとき、その整数は平方数でないことを示せ。
$a,2,3,4,・・・,99,100$
$2^23^2+3=39$と$2^2+3^2+2=15$の最大公約数は3
残り1つになった整数は平方数でない
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
黒板に1以上100以下の整数が1つずつ書かれている。
黒板から整数$a,b$を選んで消し、新たに$a^2b^2+3$と$a^2+n^2+2$の最大公約数を書くという操作を繰り返し行う。
黒板に書かれている整数が1つだけになったとき、その整数は平方数でないことを示せ。
$a,2,3,4,・・・,99,100$
$2^23^2+3=39$と$2^2+3^2+2=15$の最大公約数は3
残り1つになった整数は平方数でない
投稿日:2023.08.26

<関連動画>

3つの素数の平方の和が素数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,q,rは相異なる素数$p^2+q^2+r^2$が素数となるための必要条件を2つ以上挙げてください.
この動画を見る 

京大の整数問題!落としてはいけない問題です!【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
2以上の自然数$n$に対し、$n$と$n^2+2$がともに素数になるのは、$n=3$の場合に限ることを示せ。

京都大過去問
この動画を見る 

宮崎大 整数問題基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数Pを2進法で表したらすべての位の数が1でk桁であったkは素数であることを示せ.

宮崎大過去問
この動画を見る 

福田の数学〜立教大学2022年経済学部第1問(3)〜整式の割り算と余り

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを定数とする。
3次式 $F(x)=x^3-6x+a$を2次式$G(x)=x^2 -3x+2$で割った余りを$R(x)$ とする。
G(x)がR(x)で割り切れるようなaの値をすべて求めよ。

2022立教大学経済学部過去問
この動画を見る 

整数問題 履正社 (大阪)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\frac{900}{n}}$と$\frac{n+2}{9}$がともに自然数となる自然数nのうち最も小さいものは?
履正社高等学校
この動画を見る 
PAGE TOP