【高校数学】数Ⅲ-113 平均値の定理① - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-113 平均値の定理①

問題文全文(内容文):
数Ⅲ(平均値の定理①)
Q.次の関数$f(x)$と区間$[a,b]$に対して、条件$\frac{f(b)-f(a)}{b-a}=f'(c)$、$a\lt c\lt b$を満たす$c$の値を求めよ

①$f(x)=\frac{1}{x}$、$[2,4]$

➁$f(x)=\log x$、$[1,2]$
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(平均値の定理①)
Q.次の関数$f(x)$と区間$[a,b]$に対して、条件$\frac{f(b)-f(a)}{b-a}=f'(c)$、$a\lt c\lt b$を満たす$c$の値を求めよ

①$f(x)=\frac{1}{x}$、$[2,4]$

➁$f(x)=\log x$、$[1,2]$
投稿日:2018.09.04

<関連動画>

福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x$$-(t^2+2)y+4t+2=0$
を考える。

(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。

(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。

(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 

福田の数学〜千葉大学2022年理系第9問〜関数が常に増加する条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
rを正の実数とし、関数
$f(x)=x+\frac{r}{\sqrt{1+\sin^2x}}$
を考える。
(1)$r=1$のとき、f$(x)$は常に増加することを示せ。
(2)次の条件を満たす最大の正の実数cを求めよ。

条件:$0 \lt r \lt c$のときは$f(x)$が常に増加する。

2022千葉大学理系過去問
この動画を見る 

二階微分>0 なぜ下に凸・指数関数の微分 名古屋大の問題の補足

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
指数関数の微分の補足 解説動画です
この動画を見る 

福島大 3次関数の接線 微分

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(-1,1)$から$y=x^3-2px+3$に接線が2本引けるとき$p$の値を求めよ

出典:1991年福島大学 過去問
この動画を見る 

光文社新書「中学の知識でオイラーの公式がわかる」Vol.7積の微分の公式証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
積の微分の公式証明解説動画です
この動画を見る 
PAGE TOP