福田のわかった数学〜高校2年生042〜軌跡(9)媒介変数表示の軌跡(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生042〜軌跡(9)媒介変数表示の軌跡(2)

問題文全文(内容文):
数学$\textrm{II}$ 軌跡(9) 媒介変数表示(2)
tが実数値をとって変化するとき、
$x=\frac{t^2-1}{t^2+1} y=\frac{2t}{t^2+1}$
はどんな曲線を表すか。
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(9) 媒介変数表示(2)
tが実数値をとって変化するとき、
$x=\frac{t^2-1}{t^2+1} y=\frac{2t}{t^2+1}$
はどんな曲線を表すか。
投稿日:2021.07.29

<関連動画>

高専数学 微積I #229(2) 媒介変数表示関数のx軸回転体の体積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq \dfrac{\pi}{2}$である.
$x=\sin t$
$y=\sin 2t$
と$x$軸で囲まれた図形を$x$軸のまわりに回転して
できる回転体の体積$V$を求めよ.
この動画を見る 

高専数学 微積I #234(1)(2) 極座標表示の曲線の面積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
(1)曲線$r=\theta^2\left(0\leqq \theta \leqq \dfrac{\theta}{2}\right)$と
半直線$\theta=\dfrac{\theta}{2}$で囲まれた図形の面積を求めよ.

(2)曲線$r=\cos\theta+2(0\leqq \theta \leqq 2\pi)$で囲まれた
図形の面積を求めよ.
この動画を見る 

大学入試問題#133 京都大学(2009) 極方程式の曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
極方程式
$r=1+\cos\theta$
$(0 \leqq \theta \leqq \pi)$で表される曲線の長さ$l$を求めよ。

出典:2009年京都大学 入試問題
この動画を見る 

【高校数学】数Ⅲ-41 曲線の媒介変数表示②

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\theta$を媒介変数とする。次の式で表される図形はどのような曲線か。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=3\cos\theta-2 \\
y=5\sin\theta+2
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\dfrac{3}{\cos\theta}+5\\
y=2\tan\theta-1
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

福田のわかった数学〜高校3年生理系086〜グラフを描こう(8)媒介変数表示のグラフ

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(8)

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=t^3-3t^2\\
y=t^2-2t
\end{array}
\right.
\end{eqnarray}$
のグラフを描け。
ただし凹凸は調べなくてよい。
この動画を見る 
PAGE TOP