福田の数学〜慶應義塾大学2024年薬学部第1問(3)〜領域における最大最小 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年薬学部第1問(3)〜領域における最大最小

問題文全文(内容文):
$\Large\boxed{1}$ (3)$xy$平面上に連立不等式$x$+$y$≦4, $5x$-$7y$≧-40, $x$-$3y$≦-8 の表す領域Dがある。点P($x$,$y$)がD内を動くとき、$x^2$+$y^2$の最小値は$\boxed{\ \ キ\ \ }$であり、最大値は$\boxed{\ \ ク\ \ }$である。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)$xy$平面上に連立不等式$x$+$y$≦4, $5x$-$7y$≧-40, $x$-$3y$≦-8 の表す領域Dがある。点P($x$,$y$)がD内を動くとき、$x^2$+$y^2$の最小値は$\boxed{\ \ キ\ \ }$であり、最大値は$\boxed{\ \ ク\ \ }$である。
投稿日:2024.03.23

<関連動画>

福田の数学〜九州大学2022年理系第3問〜約数と倍数と不定方程式の自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
自然数m,nが
$n^4=1+210m^2  \ldots①$
を満たすとき、以下の問いに答えよ。
(1)$\frac{n^2+1}{2},\ \frac{n^2-1}{2}$は互いに素な整数であることを示せ。
(2)$n^2-1$は168の倍数であることを示せ。
(3)①を満たす自然数の組(m,n)を1つ求めよ。

2022九州大学理系過去問
この動画を見る 

大学入試問題#585「気付けば暗算」 同志社大学(2004) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#同志社大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\sqrt{ n }\sin(\displaystyle \frac{1}{n})\}\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{\sqrt{ n+k }}$

出典:2004年同志社大学 入試問題
この動画を見る 

福田の数学〜一橋大学2025文系第2問〜円と円の交点を通る直線に対称な点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

座標平面上に原点を中心とす半径$3$の円$C_1$がある。

また、直線$x=2$上の点$P$を中心とする半径$1$の円を

$C_2$とする。

(1)$C_1$と$C_2$が共有点を$2$つ持つような$P$の

$y$座標の範囲を求めよ。

(2)$C_1$と$C_2$が共有点を$2$つ持つとき、

その$2$つの共有点を通る直線を$\ell$とする。

$\ell$に関して$P$と対称な位置にある点を$Q$とする。

ただし、$P$が$\ell$上にあるときは$Q=P$とする。

$P$の$y$座標が(1)で求めた範囲を動くとき、

点$Q$の軌跡を求め、図示せよ。

$2025$年一橋大学文系過去問題
この動画を見る 

【概要欄に誘導あり】大学入試問題#115 京都大学(2002) 曲線の長さ(極方程式)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
(1)
$x \geqq 0$
$f(x)=log(x+\sqrt{ 1+x^2 })$を微分せよ。

(2)
極方程式
$r=\theta(0 \leqq \theta \leqq \pi)$で定まる曲線の長さ$L$を求めよ。

出典:2002年京都大学 入試問題
この動画を見る 

東京水産大 三次関数の共通接線

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3$と$y=(x+1)^3+k$の両方に接する直線が5本引けるような$k$の範囲を求めよ

出典:1994年東京海洋大学 過去問
この動画を見る 
PAGE TOP