【数B】確率分布と統計的推測:正規分布を使って上位何人目か考えてみよう! - 質問解決D.B.(データベース)

【数B】確率分布と統計的推測:正規分布を使って上位何人目か考えてみよう!

問題文全文(内容文):
1学年600人の生徒が数学Bのテストを受けた。
母集団がN(60,25)に従うとき、70点を取った生徒は上位何番目?
標準正規分布を用いて求めよう!正規分布表を使います。
チャプター:

00:00問題
00:22解答・解説

単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1学年600人の生徒が数学Bのテストを受けた。
母集団がN(60,25)に従うとき、70点を取った生徒は上位何番目?
標準正規分布を用いて求めよう!正規分布表を使います。
投稿日:2021.10.10

<関連動画>

【数B】確率分布:期待値の計算と意味をコンパクトに教えます!

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
コイン3枚を投げ、表が出た枚数をX枚とするとき、Xの期待値
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題3。確率分布、統計の問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
(1)A地区で保護されるジャガイモには1個の重さが200gを超えるものが
25%含まれることが経験的にわかっている。花子さんはA地区で収穫された
ジャガイモから400個を無作為に抽出し、重さを計測した。そのうち、重さが
200gを超えるジャガイモの個数を表す確率変数をZとする。このときZは
二項分布B(400,0,    )に従うから、Zの平均(期待値)は    である。

(2)Zを(1)の確率変数とし、A地区で収穫されたジャガイモ400個からなる標本において
重さが200gを超えていたジャガイモの標本における比率を
R=Z400とする。このとき、Rの標準偏差はσ(R)=    である。
標本の大きさ400は十分に大きいので、Rは近似的に正規分布
N(0,    ,(    )2)に従う。
したがって、P(Rx)=0.0465となるようなxの値は    となる。
ただし、    の計算においては3=1.73とする。

    の解答群
36400  ①34  ②380  ③340 

    については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪0.209   ①0.251   ②0.286   ③0.395

(3)B地区で収穫され、出荷される予定のジャガイモ1個の重さは100gから
300gの間に分布している。B地区で収穫され、出荷される予定のジャガイモ
1個の重さを表す確率変数をXとするとき、Xは連続型確率変数であり、X
の取り得る値xの範囲は100x300である。
花子さんは、B地区で収穫され、出荷される予定の全てのジャガイモのうち、
重さが200g以上のものの割合を見積もりたいと考えた。そのために花子さんは
Xの確率密度関数f(x)として適当な関数を定め、それを用いて割合を
見積もるという方針を立てた。
B地区で収穫され、出荷される予定のジャガイモから206個を無作為に抽出
したところ、重さの標本平均は180gであった。
図1(※動画参照)はこの標本のヒストグラムである。

花子さんは図1のヒストグラムにおいて、重さxの増加とともに度数がほぼ
一定の割合で減少している傾向に着目し、Xの確率密度関数f(x)として、1次関数
f(x)=ax+b (100x300)
を考えることにした。ただし、100x300の範囲でf(x)0とする。
このとき、P(100X300)=    であることから

    104a+    102b=     
である。
花子さんは、Xの平均(期待値)が重さの標本平均180gと等しくなるように
確率密度関数を定める方法を用いることにした。
連続型確率変数Xの取り得る値xの範囲が100x300で、その
確率密度関数がf(x)のとき、Xの平均(期待値)mは
m=100300xf(x)dx
で定義される。この定義と花子さんの採用した方法から
m=263105a+4104b=180 
となる。①と②により、確率密度関数は
f(x)=     105x+    103 
と得られる。このようにして得られた③のf(x)は、100x300の範囲で
f(x)0を満たしており、確かに確率密度関数として適当である。
したがって、この花子さんお方針に基づくと、B地区で収穫され、出荷される
予定の全てのジャガイモのうち、重さが200g以上のものは    
あると見積もることができる。

    については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪33 ①34 ②35 ③36

2022共通テスト数学過去問
この動画を見る 

血液型ガチャ 愛知医科大

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
血液型ABの割合を10%とする.
◻人以上集めればその中に少なくとも1人以上AB型がいる確率が99%以上となる.
◻を求めよ.
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第3問〜確率分布と統計

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3
ある大学には、多くの留学生が在籍している。この大学の留学生に対して学習や生活を支援する
留学生センターでは、留学生の日本語の学習状況について関心を寄せている。

(1)この大学では、留学生に対する授業として、いかに示す三つの日本語学習コースがある。
初級コース:1週間に10時間の日本語の授業を行う
中級コース:1週間に8時間の日本語の授業を行う
上級コース:1週間に6時間の日本語の授業を行う
すべての留学生が三つのコースのうち、いずれか一つのコースのみに登録する
ことになっている。留学生全体における各コースに登録した留学生の割合は、
それぞれ 初級コース:20%, 中級コース:35%, 上級コース:    
であった。ただし、数値はすべて正確な値であり、四捨五入されていないものとする。
この留学生の集団において、一人を無作為に抽出したとき、その留学生が1週間に
受講する日本語学習コースの授業の時間数を表す確率変数をXとする。
Xの平均(期待値)は    2であり、Xの分散は    20である。

次に、留学生全体を母集団とし、a人を無作為に抽出した時、初級コースに登録した人数
を表す確率変数をYとすると、Yは二項分布に従う。このとき、Yの平均E(Y)

E(Y)=        

である。
また、上級コースに登録した人数を表す確率変数をZとすると、Zは二項分布に従う。
Y,Zの標準偏差をそれぞれδ(Y),δ(Z)とすると

δ(Z)δ(Y)=            

である。
ここで、a=100としたとき、無作為に抽出された留学生のうち、初級コースに
登録した留学生が28人以上となる確率をpとする。a=100は十分大きいので、
Yは近似的に正規分布に従う。このことを用いてpの近似値を求めると、
p=    である。


    については。最も適当なものを、次の⓪~⑤のうちから一つ選べ。
0.002 ①0.023 ②0.228 ③0.477 ④0.480 ⑤0.977


(2)40人の留学生を無作為に抽出し、ある1週間における留学生の日本語学習コース
以外の日本語の学習時間(分)を調査した。ただし、日本語の学習時間は母平均m,
母分散δ2の分布に従うものとする。
母分散δ2640と仮定すると、標本平均の標準偏差は    となる。
調査の結果、40人の学習時間の平均値は120であった。標本平均が近似的に
正規分布に従うとして、母平均mに対する信頼度95%の信頼区間をC1mC2とすると
C1=    .    ,
C2=    .    
である。


(3)(2)の調査とは別に、日本語の学習時間を再度調査することになった。そこで、
50人の留学生を無作為に抽出し、調査した結果、学習時間の平均値は120であった。
母分散δ2を640と仮定したとき、母平均mに対する信頼度95%の信頼区間を
D1mD2とすると、    が成り立つ。
一方、母分散δ2を960と仮定したとき、母平均mに対する信頼度95%の
信頼区間をE1mE2とする。このとき、D2D1=E2E1
なるためには、標本の大きさを50の    .    倍にする必要がある。

    の解答群
D1<C1かつD2<C2  ①D1<C1かつD2>C2
D1>C1かつD2<C2  ③D1>C1かつD2>C2

2021共通テスト過去問
この動画を見る 

【数B】確率分布:確率分布表から分散を求めよう!

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率変数Xが,X=0,1,2にあたる確率を1/6,1/3,1/2としたとき、分散V(X)の値
この動画を見る 
PAGE TOP preload imagepreload image