指数の方程式 - 質問解決D.B.(データベース)

指数の方程式

問題文全文(内容文):
(94)94=x6
x=?
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
(94)94=x6
x=?
投稿日:2023.09.09

<関連動画>

【数A】【整数の性質】素因数分解を利用する問題 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような自然数の個数を求めよ。
(1)108以下の自然数で,108と互いに素である自然数
(2)600以下の自然数で,600と互いに素である自然数

(1)1から240までの240個の自然数の積N=1・2・3・・・240について,Nを素因数分解したとき,素因数3の個数を求めよ。
(2)1から450までの450個の自然数の積N=1・2・3・・・450について,Nを素因数分解したとき,素因数7の個数を求めよ。

次のような自然数の積Nを計算すると,末尾には0が連続して何個並ぶか
(1)1から125までの125個の自然数の積N=1・2・3・・・125
(2)1から300までの300個の自然数の積N=1・2・3・・・300
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第1問〜4つの音で作るチャイムの種類

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1ある学校では、ドミソシの4つの音を4つ組み合わせてチャイムを作り、
授業の開始・終了などを知らせるために鳴らしている。
チャイムは、図1(※動画参照)のように4×4の格子状に並んだ16個のボタン
を押すことによって作ることができる。縦方向は音の種類を表し、横方向は時間
を表している。例えば、ドミソシという音を1つずつ、
順番に鳴らすチャイムを作るには、図2(※動画参照)のようにボタンを押せばよい。
ただし、鳴らすことのできる音の数は縦1列あたり1つだけであり、
音を鳴らさない無音は許されず、それぞれの例で必ず1つの音を選ばなければならないとする。
(1)4つの音を1回ずつ鳴らすことを考えた場合、チャイムの種類は    通り。
(2)(1)に加えて、同じ音を連続して2回繰り返すことを1度だけしてもかまわない(例:ドミミソ)
とした場合、
チャイムの種類は合わせて    通りになる。
ただし、連続する音以外は高々1回までしか鳴らすことはできず、
それらは連続する音とは異ならなければならないものとする。
(3)(1)と(2)に加えて、同じ音を連続して4回繰り返すチャイムを許すと、
可能なチャイムの種類は合わせて    通りになる。

2022慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第4問〜2つの直線に接し互いに外接する2つの円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xy平面の第1象限内において、直線l:y=mx (m>0)とx軸の両方に
接している半径aの円をCとし、円Cの中心を通る直線y=tx (t>0)を考える。
また、直線lとx軸、および、円Cの全てにそれぞれ1点で接する円の半径をbとする。
ただし、b>aとする。
(1)mを用いてtを表せ。
(2)tを用いてbaを表せ。
(3)極限値limm+01m(ba1)を求めよ。

2022東北大学理系過去問
この動画を見る 

帝京大(医)漸化式 合同式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
an=(1+2)n+(12)n
anは整数であることを示せ
a100を3で割った余り

出典:2005年帝京大学医学部 過去問
この動画を見る 

福田のわかった数学〜高校1年生091〜確率(11)反復試行の確率(5)東京大学の問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学A 確率(11) 反復試行(5)
格子点上を次の規則で点Pが動く。
(a)最初、点Pは原点にある。
(b)ある時刻で点Pが(m,n)にあるとき、その1秒後の点Pの位置は等確率で
(m+1,n), (m,n+1), (m,n1), (m1,n)である。
6秒後に点Pが直線y=x上にある確率を求めよ。

東京大学過去問
この動画を見る 
PAGE TOP preload imagepreload image