問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^x+9^y=5 \\
2^x・3^y=S
\end{array}
\right.
\end{eqnarray}$
連立方程式が実数解2組もつための$S$の必要十分条件を求めよ.
2021上智大過去問
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^x+9^y=5 \\
2^x・3^y=S
\end{array}
\right.
\end{eqnarray}$
連立方程式が実数解2組もつための$S$の必要十分条件を求めよ.
2021上智大過去問
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^x+9^y=5 \\
2^x・3^y=S
\end{array}
\right.
\end{eqnarray}$
連立方程式が実数解2組もつための$S$の必要十分条件を求めよ.
2021上智大過去問
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^x+9^y=5 \\
2^x・3^y=S
\end{array}
\right.
\end{eqnarray}$
連立方程式が実数解2組もつための$S$の必要十分条件を求めよ.
2021上智大過去問
投稿日:2021.02.12