【高校受験対策/数学】関数52 - 質問解決D.B.(データベース)

【高校受験対策/数学】関数52

問題文全文(内容文):
高校受験対策・関数52

Q
太郎さんが所属するサッカー部で、オリジナルタオルを作ることになり、かかる費用を調べたところ、A店とB店の料金はそれぞれ表1、表2のようになっていた。
また、右の図はA店で タオルを作る枚数を$x$ 枚としたときのかかる費用を$y$ 円として、$x$と$y$の関係をグラフに 表したものである。
ただし、このグラフで端の点をふくむ場合は●、ふくまない場合は○で表している。
ただし、消費税は考えないものとする。

【表1】 A店の料金
枚数によって、金額は次の通りです。
・20枚までは何枚でも、3500円
・21枚から50枚までは何枚でも6500円
・51枚から80枚までは何枚でも9000円

【表2】 B店の料金
注文の時に初期費用として3000円かかり、それに加えてタオル1枚につき100円かかります。


①B店でタオルを作る枚数を$x$ 枚としたときのかかる費用を$y$ 円として、$y$を$x$の式で表しなさい。

②A店、B店でそれぞれタオルを30枚作るとき、かかる費用はどちらの店がいくら安いか求めなさい。

③タオルを作る枚数を40枚から80枚までとしたとき、B店で作るときにかかる費用がA店で作るときにかかる費用よりも安くなるのは、何枚以上何枚以下のときか求めなさい。
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数52

Q
太郎さんが所属するサッカー部で、オリジナルタオルを作ることになり、かかる費用を調べたところ、A店とB店の料金はそれぞれ表1、表2のようになっていた。
また、右の図はA店で タオルを作る枚数を$x$ 枚としたときのかかる費用を$y$ 円として、$x$と$y$の関係をグラフに 表したものである。
ただし、このグラフで端の点をふくむ場合は●、ふくまない場合は○で表している。
ただし、消費税は考えないものとする。

【表1】 A店の料金
枚数によって、金額は次の通りです。
・20枚までは何枚でも、3500円
・21枚から50枚までは何枚でも6500円
・51枚から80枚までは何枚でも9000円

【表2】 B店の料金
注文の時に初期費用として3000円かかり、それに加えてタオル1枚につき100円かかります。


①B店でタオルを作る枚数を$x$ 枚としたときのかかる費用を$y$ 円として、$y$を$x$の式で表しなさい。

②A店、B店でそれぞれタオルを30枚作るとき、かかる費用はどちらの店がいくら安いか求めなさい。

③タオルを作る枚数を40枚から80枚までとしたとき、B店で作るときにかかる費用がA店で作るときにかかる費用よりも安くなるのは、何枚以上何枚以下のときか求めなさい。
投稿日:2020.12.31

<関連動画>

因数分解 函館ラ・サール

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^4(2x-3y)+27(9y-6x)$を因数分解

函館ラ・サール高等学校
この動画を見る 

中学数学(2次関数)【篠原好】

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
中3向け数学「2次関数」についての説明です。
※図式・数式は動画内参照
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(3)直線と円の位置関係、高校2年生

アイキャッチ画像
単元: #数Ⅱ#円#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 直線$mx-y-(3m-1)=0$ と円$x^2+y^2=2$ の位置関係を調べよ。
この動画を見る 

【分かりやすく感覚的に…!】整数:立命館高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
4851n/2が整数の2乗となる最小の自然数nの値を求めよ。
この動画を見る 

【円周率が「分かる」…!】無理数:青山学院高等部~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
円に内接/外接する$ \color{red}{正方形・正六角形}$について考察すると
$ \Box \color{red}{\lt \pi \lt}\Box $が成り立つことが分かる.
$ \Box $を解け.

青山学院高等部過去問
この動画を見る 
PAGE TOP