ド・モアブルの定理を用いてオイラーの公式を導く - 質問解決D.B.(データベース)

ド・モアブルの定理を用いてオイラーの公式を導く

問題文全文(内容文):
ド・モアブルの定理を用いてオイラーの公式を導く方法を解説していきます.
単元: #複素数平面#関数と極限#複素数平面#関数の極限#数学(高校生)#数C#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
ド・モアブルの定理を用いてオイラーの公式を導く方法を解説していきます.
投稿日:2018.01.23

<関連動画>

福田のわかった数学〜高校3年生理系055〜格子点の個数と極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 格子点の個数と極限
右図の斜線部分(※動画参照)に含まれる
格子点の総数を$a_n$とする。
$\lim_{n \to \infty}\frac{a_n}{n^2}$を求めよ。
この動画を見る 

ネイピア数 自然対数の底e とは

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
ネイピア数って何?

自然対数の底eを解説します。
この動画を見る 

福田の数学〜青山学院大学2024理工学部第5問〜関数の増減と無限級数の収束発散の判定

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#数列の極限#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
$(1)$ 関数 $\displaystyle{y=\frac{x}{x^2+1}}$ の増減、極値、グラフの凹凸および変曲点を調べて、そのグラフを描け。
$(2)$ $k$ を自然数とする。曲線 $\displaystyle{y=\frac{x}{x^2+1}}$ と $x$ 軸および2直線 $x=k$, $x=k+1$ で囲まれた図形の面積を $k$ を用いて表せ。
$(3)$ 無限級数
\begin{equation*}
\frac{1}{1^2+1}+\frac{2}{2^2+1}+\frac{3}{3^2+1}+\cdots+\frac{n}{n^2+1}+\cdots
\end{equation*}
の収束、発散を調べよ。
この動画を見る 

【数学Ⅲ/微分】逆関数の微分

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
逆関数の微分法の公式を用いて、次の関数を微分せよ。

$y=x^{\frac{1}{5}}$
この動画を見る 

早稲田大 みんな大好きBBB

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{i=6}^{\infty} \dfrac{1800}{(n-5)(n-4)(n-1)n}$
これを求めよ。

早稲田大過去問
この動画を見る 
PAGE TOP