2016年度 本試験 数学B 群数列の解き方復習! - 質問解決D.B.(データベース)

2016年度 本試験 数学B 群数列の解き方復習!

問題文全文(内容文):
2016年度 本試験 数学B 群数列の解き方復習解説動画です
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
2016年度 本試験 数学B 群数列の解き方復習解説動画です
投稿日:2019.01.17

<関連動画>

福田の数学〜上智大学2023年TEAP利用型文系第4問(2)〜割り算の余りと等差数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (2)2つの集合
A=$\left\{n|nは3で割ると2余る自然数である\right\}$
B=$\left\{n|nは5で割ると3余る自然数である\right\}$
を考える。A$\cap$Bの要素を小さい順に並べて作った数列の第$k$項は
$\boxed{\ \ ヨ\ \ }k$+$\boxed{\ \ ラ\ \ }$
である。また、A$\cup$Bの要素を小さい順に並べて作った数列の第100項は
$\boxed{\ \ リ\ \ }$
である。
この動画を見る 

福井大(医)漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$であり,$n\geqq 2$とする.
$a_{n+1}-\dfrac{4n+2}{n+1}an+\dfrac{4n-4}{n}a_{n-1}=0$

(1)$b_n=a_{n+1}-\dfrac{2n}{n+1}a_n(n\geqq 1)$,$b_n$を$n$で表せ.
(2)$a_n$を求めよ.

福井大(医)過去問
この動画を見る 

大学入試問題#510「よくある形」 #防衛医科大学(2015) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#学校別大学入試過去問解説(数学)#数学(高校生)#数B#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\ a_2=e$
$a_{n+2}=a_n^{-2}・a_{n+1}^3$
一般項$a_n$を求めよ

出典:2015年防衛医科大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第4問〜三角形の個数を数える

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}} $
1辺の長さが$1$の正三角形を下図(※動画参照)のように積んでいく。図の中には大きさの異なったいくつかの正三角形が含まれているが、底辺が下側にあるものを「上向きの正三角形」、底辺が上側にあるものを「下向きを正三角形」とよぶことにする。例えば、この図(※動画参照)は1辺の長さが1の正三角形を4段積んだものであり、1辺の長さが1の上向きの正三角形は10個あり、1辺の長さが2の上向き正三角形は6個ある。
また1辺の長さが1の下向きの正三角形は6個ある。上向きの正三角形の総数は20であり、下向きの正三角形の総数は7である。こうした正三角形の個数に関して次の問いに答えよ。
(1)1辺の長さが1の正三角形を$5$段積んだとき、上向きと下向きとを合わせた正三角形の総数を求めよ。
(2)1辺の長さが1の正三角形を$n$段(ただし$n$は自然数)積んだとき、上向きの正三角形の総数を求めよ。
(3)1辺の長さが1の正三角形を$n$段(ただし$n$は自然数)積んだとき、下向きの正三角形の総数を求めよ。
この動画を見る 

14和歌山県教員採用試験(数学:4番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$a_1=5,a_{n+1}=\dfrac{5a_n+6}{a_4+4}$とする.

(1)$b_n=\dfrac{a_n+\beta}{a_n+\alpha}\ (\alpha \gt \beta)$
$b_n$が等比数列となるような$\alpha,\beta$の値を求めよ.

(2)$a_n$を求めよ.
この動画を見る 
PAGE TOP