問題文全文(内容文):
$a_1=r,a_2=r+1,a_{n+2}=a_{n+1}(a_n+1)$
$a_n$を素数$P$で割った余りを$b_n$
(1)
$b_{n+2}$は$b_{n+1}(b_n+1)$を$p$で割った余りと一致することを示せ
(2)
$r=2,p=17$の場合に10以下のすべての自然数$r$に対し、$b_n$を求めよ
(3)
ある相異なる2つの自然数$n,m$に対して$b_{n+1}=b_{m+1} \gt 0,b_{n+2}=b_{m+2}$が成り立つとき、$b_n=b_m$を示せ
出典:東京大学 入試問題
$a_1=r,a_2=r+1,a_{n+2}=a_{n+1}(a_n+1)$
$a_n$を素数$P$で割った余りを$b_n$
(1)
$b_{n+2}$は$b_{n+1}(b_n+1)$を$p$で割った余りと一致することを示せ
(2)
$r=2,p=17$の場合に10以下のすべての自然数$r$に対し、$b_n$を求めよ
(3)
ある相異なる2つの自然数$n,m$に対して$b_{n+1}=b_{m+1} \gt 0,b_{n+2}=b_{m+2}$が成り立つとき、$b_n=b_m$を示せ
出典:東京大学 入試問題
単元:
#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=r,a_2=r+1,a_{n+2}=a_{n+1}(a_n+1)$
$a_n$を素数$P$で割った余りを$b_n$
(1)
$b_{n+2}$は$b_{n+1}(b_n+1)$を$p$で割った余りと一致することを示せ
(2)
$r=2,p=17$の場合に10以下のすべての自然数$r$に対し、$b_n$を求めよ
(3)
ある相異なる2つの自然数$n,m$に対して$b_{n+1}=b_{m+1} \gt 0,b_{n+2}=b_{m+2}$が成り立つとき、$b_n=b_m$を示せ
出典:東京大学 入試問題
$a_1=r,a_2=r+1,a_{n+2}=a_{n+1}(a_n+1)$
$a_n$を素数$P$で割った余りを$b_n$
(1)
$b_{n+2}$は$b_{n+1}(b_n+1)$を$p$で割った余りと一致することを示せ
(2)
$r=2,p=17$の場合に10以下のすべての自然数$r$に対し、$b_n$を求めよ
(3)
ある相異なる2つの自然数$n,m$に対して$b_{n+1}=b_{m+1} \gt 0,b_{n+2}=b_{m+2}$が成り立つとき、$b_n=b_m$を示せ
出典:東京大学 入試問題
投稿日:2019.09.23