大学入試問題#855「47の主張が強すぎる」 #自治医科大学(2012) #式変形 - 質問解決D.B.(データベース)

大学入試問題#855「47の主張が強すぎる」 #自治医科大学(2012) #式変形

問題文全文(内容文):
$x^{\frac{1}{4}}+x^{-\frac{1}{4}}=3$のとき
$\displaystyle \frac{47}{2}(\displaystyle \frac{x^{\frac{3}{4}}+x^{-\frac{3}{4}}}{x+x^{-1}})$の値を求めよ。
$(0 \lt x:$実数$)$

出典:2012年自治医科大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$x^{\frac{1}{4}}+x^{-\frac{1}{4}}=3$のとき
$\displaystyle \frac{47}{2}(\displaystyle \frac{x^{\frac{3}{4}}+x^{-\frac{3}{4}}}{x+x^{-1}})$の値を求めよ。
$(0 \lt x:$実数$)$

出典:2012年自治医科大学
投稿日:2024.06.20

<関連動画>

解ける?一橋大学の整数問題の難問! #Shorts #ずんだもん #勉強 #数学

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nを2以上20以下の整数、
kを1以上n-1以下の整数とする。
n+2Ck+1=2(nCk-1+nCk+1)
が成り立つような整数の組(n,k)を求めよ。
この動画を見る 

福田の数学〜青山学院大学2024理工学部第3問〜2次方程式の解の条件と領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$p,qを実数の定数とし、xについての2次方程式$
$x^2+px+q=0 \cdots (\ast)$
を考える。2次方程式$(\ast)$が異なる2つの実数解$\alpha,\beta(\alpha\lt\beta)$をもち、かつ$\alpha,\beta$が
$\displaystyle \frac{\alpha}{2}\leqq\beta\leqq2\alpha$
を満たすとき、以下の問いに答えよ。
(1)点$(p,q)$のとりうる範囲を座標平面上に図示せよ。
(2)$\alpha,\beta$がさらに
$(\alpha+1)(\beta+1)\leqq 3$
を満たすとする。このとき、pの値が最小となるような$(p,q)$を求めよ。
(3)(2)で求めた$(p,q)$に対して、2次方程式$(\ast)$の解$\alpha,\beta$を求めよ。
この動画を見る 

福田の数学〜九州大学2025理系第2問〜定積分の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

以下の問いに答えよ。

(1)$y=\tan x$とするとき、

$\dfrac{dy}{dx}$を$y$の整式で表せ。

(2)次の定積分を求めよ。

$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{\tan^4x-\tan^2 x-2}{\tan^2x-4}dx$

$2025$年九州大学理系過去問題
この動画を見る 

福田の一夜漬け数学〜折れ線の最小(4)〜受験編、一橋大学の問題に挑戦!

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$O$を中心とする半径$r$の円周上に、2点$A,B$を$\angle AOB \lt \displaystyle \frac{\pi}{2}$となる
ようにとり、$\theta=\angle AOB$とおく。線分$AB$上に点$D$をとる。また、
点$P$は線分$OA$上を、点$Q$は線分$OB$上を動く。
(1)$a=OD$とおく。$DP+PQ+QD$の最小値を$a$と$\theta$で表せ。
(2)さらに点$D$が線分$AB$上を動くときの
$DP+PQ+QD$の最小値を$r$と$\theta$で表せ。

一橋大学過去問
この動画を見る 

#福岡大学医学部2018#極限_61

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#福岡大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty} \sqrt x \left(\sqrt{1+x}-\sqrt x \right)$を解け.

2018福岡大学医学部過去問題
この動画を見る 
PAGE TOP