大学入試問題#792「初手が重要!!」 #室蘭工業大学(2020) #定積分 - 質問解決D.B.(データベース)

大学入試問題#792「初手が重要!!」 #室蘭工業大学(2020) #定積分

問題文全文(内容文):
$f(x)=\displaystyle \frac{x^2+x-2}{(2x+1)(x^2+x+1)}$と定める。
定積分$\displaystyle \int_{0}^{\frac{\pi}{2}} f(\cos^2x) \sin(2x)dx$の値を求めよ。

出典:2020年室蘭工業大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#室蘭工業大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^2+x-2}{(2x+1)(x^2+x+1)}$と定める。
定積分$\displaystyle \int_{0}^{\frac{\pi}{2}} f(\cos^2x) \sin(2x)dx$の値を求めよ。

出典:2020年室蘭工業大学 入試問題
投稿日:2024.04.14

<関連動画>

大学入試問題#69 高知大学(2012) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: ますただ
問題文全文(内容文):
各自然数$n$に対して
$a_n \gt 0$
$S_n=\displaystyle \frac{1}{2}a_n^2+\displaystyle \frac{1}{2}a_n-1$をみたす一般項$a_n$を求めよ。

出典:2012年高知大学 入試問題
この動画を見る 

大阪大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$

$a_{n+1}\displaystyle \frac{na_n}{2+n(a_n+1)}$

一般項を求めよ

出典:大阪大学 過去問
この動画を見る 

大学入試問題#303 横浜市立大学医学部(2011) #積分の応用 #微分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$f(x)$微分可能
$f(x)+\displaystyle \int_{0}^{x}f(t)e^{x-t}dt=\sin\ x$をみたす
$f(0),f'(x),f(x)$を求めよ

出典:2011年横浜市立大学医学部 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(2)〜回転体の体積と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $(2)0 \lt \alpha \lt 1,m \gt 0$とする。$曲線y=x^{\alpha}-mx(x \geqq 0)$と$x軸$で囲まれた図形を$x軸$の周りに1回転させてできる回転体の体積を$V$とする。$m$を固定して$a \to +0$とするときの$V$の極限値を$m$の式で表すと、$\lim_{a \to +0}V=\boxed{\ \ (え)\ \ }$となる。
また、$\alpha$を固定して$m \to \infty$とするとき$m^3V$が$0$でない数に収束するならば
$\alpha=\boxed{\ \ (お)\ \ }$である。

2021慶應義塾大学医学部過去問
この動画を見る 

神戸薬 放物線と2本の接線で囲まれた面積 積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
神戸薬科大学過去問題
y=x上のT(t,t)から$y=x^2+1$へ2本の接線を引く。
接点をA,B。放物線とTA,TBで囲まれた面積をSとする。
Sの最小値
この動画を見る 
PAGE TOP