大学入試問題#496「よくある問題」 産業医科大学 改 (2016) #定積分 - 質問解決D.B.(データベース)

大学入試問題#496「よくある問題」  産業医科大学 改 (2016) #定積分

問題文全文(内容文):
$\displaystyle \int_{2}^{3} (x-1)(x-2)^{\frac{1}{3}} dx$

出典:2016年産業医科大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{3} (x-1)(x-2)^{\frac{1}{3}} dx$

出典:2016年産業医科大学 入試問題
投稿日:2023.04.05

<関連動画>

#会津大学2024#定積分_3#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{e^2}^{e^3} \displaystyle \frac{1}{x log x} dx$

出典:2024年会津大学
この動画を見る 

福田の数学〜中央大学2022年理工学部第1問〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)が
$f(x)=\int_0^{\pi}tf(t)\cos(x+t)dt+\frac{1}{4}$
を満たしている。このとき,
$A= \int_0^{\pi}tf(t)\cos tdt$,
$B=\int_0^{\pi}tf(t)\sin tdt... ①$
とおいて$f(x)$をAとBで表すと、
$f(x)=A×(\ \ \ \boxed{ア}\ \ \ )+B×(\ \ \ \boxed{イ}\ \ \ )+\frac{1}{4}... ②$
となる。ここで、

$\int_0^{\pi}t\cos tdt=-2,\ \ \ \int_0^{\pi}t\cos^2 tdt=\boxed{ウ},\ \ \ \int_0^{\pi}t\sin tdt=\pi$
$\int_0^{\pi}t\sin^2 tdt=\boxed{エ},\ \ \ \int_0^{\pi}t\cos t\sin tdt=\boxed{オ}$

を用い、①に②を代入して整理すると、AとBの満たす連立方程式

$\left\{
\begin{array}{1}
(\ \ \ \boxed{\ \ カ\ \ }\ \ \ )A-\pi B+2=0\\
\pi A +(\ \ \ \boxed{\ \ キ\ \ }\ \ \ )B-\pi = 0\\
\end{array}
\right.$

が得られる。この連立方程式を解くと
$A=\frac{\boxed{ク}}{\pi^4-\pi^2-16},\ \ \ B=\frac{\pi (\ \ \ \boxed{ケ}\ \ \ )}{\pi^4-\pi^2-16}$
が得られ、したがって
$f(x)= \frac{\boxed{ク}}{\pi^4-\pi^2-16}×(\ \ \ \boxed{ア}\ \ \ )+$
$\frac{\pi (\ \ \ \boxed{ケ}\ \ \ )}{\pi^4-\pi^2-16}×(\ \ \ \boxed{イ}\ \ \ )+\frac{1}{4}$
となる。

$\boxed{ア},\boxed{イ}$の解答群
$ⓐ\sin x\ \ \ ⓑ-\sin x\ \ \ ⓒ\cos x\ \ \ ⓓ-\cos x$
$ⓔ\tan x\ \ \ ⓕ-\tan x$

$\boxed{ウ},\boxed{エ},\boxed{オ}$の解答群
$ⓐ\pi \ \ \ ⓑ\frac{\pi}{2}\ \ \ ⓒ\frac{\pi}{4}\ \ \ ⓓ\frac{\pi}{8}\ \ \ ⓔ-\pi $
$ⓕ-\frac{\pi}{2}\ \ \ ⓖ-\frac{\pi}{4}\ \ \ ⓗ-\frac{\pi}{8}\ \ \ ⓘ\pi^2 \ \ \ ⓙ\frac{\pi^2}{2}$
$ⓚ\frac{\pi^2}{4}\ \ \ ⓛ\frac{\pi^2}{8}\ \ \ ⓜ-\pi^2 \ \ \ ⓝ-\frac{\pi^2}{2}\ \ \ ⓞ-\frac{\pi^2}{4}$
$ⓟ-\frac{\pi^2}{8}\ \ \ ⓠ\frac{\pi^2+4}{16}\ \ \ ⓡ\frac{\pi^2-4}{16}\ \ \ ⓢ\frac{-\pi^2+4}{16}\ \ \ ⓣ-\frac{\pi^2+4}{16}$

$\boxed{カ},\boxed{キ},\boxed{ク},\boxed{ケ}$の解答群
$ⓐ\pi^2+2\ \ \ ⓑ\pi^2-2\ \ \ ⓒ-\pi^2+2\ \ \ ⓓ-\pi^2-2$
$ⓔ\pi^2+4\ \ \ ⓕ\pi^2-4\ \ \ ⓖ-\pi^2+4\ \ \ ⓗ-\pi^2-4$
$ⓘ\pi^2+6\ \ \ ⓙ\pi^2-6\ \ \ ⓚ-\pi^2+6\ \ \ ⓛ-\pi^2-6$
$ⓜ\pi^2+8\ \ \ ⓝ\pi^2-8\ \ \ ⓞ-\pi^2+8\ \ \ ⓟ-\pi^2-8$

2022中央大学理工学部過去問
この動画を見る 

【高校数学】毎日積分21日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{4}}\frac{dx}{sin^2x+3cos^2x}$
これを解け.
この動画を見る 

大学入試問題#462「~らん~さんからの紹介」 横国・信州大学 類題 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \displaystyle \frac{e^x+e^{-x}}{e^{(\sin^5x+1)}+e} dx$
この動画を見る 

東京農工大 積分公式 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京農工大学過去問題
$f(x)=x^4+ax^3+bx^2$はP(1,f(1)),Q(-2,f(-2))において直線PQと接している。
a,bを求めf(x)と直線PQとで囲まれる部分の面積を求めよ。
この動画を見る 
PAGE TOP