【高校数学】数Ⅲ-38 2次曲線と直線④ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-38 2次曲線と直線④

問題文全文(内容文):
①点$(4,1)$から楕円$x^2+2y^2=6$に引いた接線の方程式を求めよ.

②楕円$x^2+4y^2=4$と直線$y=x+k$が,
異なる2点$P,Q$で交わるとき,線分$PQ$の中点$R$の軌跡を求めよ.
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点$(4,1)$から楕円$x^2+2y^2=6$に引いた接線の方程式を求めよ.

②楕円$x^2+4y^2=4$と直線$y=x+k$が,
異なる2点$P,Q$で交わるとき,線分$PQ$の中点$R$の軌跡を求めよ.
投稿日:2017.06.05

<関連動画>

【高校数学】数Ⅲ-36 2次曲線と直線②

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の2次曲線の与えられた点における接線の方程式を求めよ.

①$y^2=-4x, \\\ (-1,2)$

②$\dfrac{x^2}{3}+\dfrac{y^2}{6}=1,\\\ (1,2)$
この動画を見る 

大学入試問題#133 京都大学(2009) 極方程式の曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
極方程式
$r=1+\cos\theta$
$(0 \leqq \theta \leqq \pi)$で表される曲線の長さ$l$を求めよ。

出典:2009年京都大学 入試問題
この動画を見る 

【数C】【平面上の曲線】楕円x²/9 + y²/4 = 1 上の点Pと点(2,0)の距離lの最小値、および最大値を求めよ

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
楕円 $\displaystyle \frac{x^2}{9}+\frac{y^2}{4}=1$ 上の
点 $\mathrm{P}$ と点$(2,\ 0)$ の距離 $l$ の最小値、および最大値を求めよ。
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(1)〜楕円と複素数平面

アイキャッチ画像
単元: #平面上の曲線#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#2次曲線#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面において、点$(-1,\ 0)$からの距離と点$(1,\ 0)$からの距離の和が4
である点は方程式$\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1$で表される曲線C上にある。点$(x,\ y)$
が曲線C上を動くとき、点$(x,\ y)$と点$(-1,\ 0)$の距離をdとおけば、dの最小値
は$\boxed{\ \ ウ\ \ }$、最大値は$\boxed{\ \ エ\ \ }$となる。複素数$z$が$|z|+|z-4|=8$を満たすとき、
$|z|$のとりうる範囲は$\boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }$である。

2021明治大学全統過去問
この動画を見る 

名古屋大 双曲線 東大大学院数学科卒 杉山さん

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=\displaystyle \frac{a^x+a^{-x}}{a^x-a^{-x}}$
$a \gt 0,a \neq 1$

(1)
$f(x)$のとりうる範囲を求めよ

(2)
$f(x)-bx=0$が解をもつ条件を求めよ

出典:1994年名古屋大学 過去問
この動画を見る 
PAGE TOP